
CS 113 – Computer
Science I

Lecture 27 – Final Exam
Review

5/2/2024

Announcements

Lab 9, Lab 10, Lab 11, HW9 due May 7th

Friday OH: 11-2pm Park 205

Exam Format

• Cumulative

• 180min

• 2 8.5/11in cheat sheets allowed (front and back)
• Format: 125 total points

• 20 points T/F questions
• 34 points short answer
• 6 points reading and understanding code
• 65 points programming

3

Searching, Sorting, and
Runtime Complexity

Runtime Analysis: Big O Notation

• Mathematical notation used to describe the performance or
complexity of an algorithm.

• Hardware independent

• Represents the upper bound of the time complexity in the
worst-case scenario.

• Helps us understand how the runtime of an algorithm grows as the
input size increases.

5

Runtime Complexity

Sort these from fastest to slowest:

• O(n)
• O(n^2)
• O(logn)
• O(1)
• O(2^n)

6

Searching

• Linear Search
• Best case?
• Worst case?

• Binary Search
• Best case?
• Worst case?

Searching

[5, 10, 17, 22, 26, 40, 50, 100]

1. Perform a linear search for the element 50
a. How many elements did we check?

1. Perform a binary search for the element 50 and and show each step
b. how many elements did we check?

Searching

[5, 10, 17, 22, 26, 40, 50, 100]

1. Perform a linear search for the element 5
a. How many elements did we check?

1. Perform a binary search for the element 5 and and show each step
b. how many elements did we check?

Searching

Is binary search always faster than linear search?

No! Big-O notation is an analysis of the worst case.

In some cases, a linear search will be faster.

Sorting

Show each step of sorting the following list:

[12, 35, 78, 21, 93, 73, 8, 66]

1. Selection Sort
2. Bubble Sort

Sorting

• Selection Sort
• runtime complexity?

• Bubble Sort
• runtime complexity?

Big-O Example 1

int n = Integer.parseInt(args[0]);
int power = 1;
while (power < n) {
 System.out.print(power + " ");
 power *= 2;
}

4/30/24 CS 131 – Spring '24 - lecture 26 13

How does the runtime grow as a function of the input
size?

O(logn)

Big-O Example 2

int fetchFirstElement(int[] arr) {
 return arr[0];
}

4/30/24 CS 131 – Spring '24 - lecture 26 14

How does the runtime grow as a function of the size
of arr?

O(1)

Big-O Example 3

int n = Integer.parseInt(args[0]);
int tot = 0;
int i = 0;

while (i < n) {
 tot = tot * i;
 i++;

for (int j=0; j<10000; j++) {
System.out.println(“hello”);

}
}

4/30/24 CS 131 – Spring '24 - lecture 26 15

How does the runtime grow as a function of the input
size?

Linearly!

O(n)

Big-O Example 4

int n = Integer.parseInt(args[0]);

for (int i = 0; i >(-1*n); i--) {
 for (int j = 0; j < n; j++) {
 System.out.println(i, j);
 }
}

4/30/24 CS 131 – Spring '24 - lecture 26 16

How does the runtime grow as a function of the input
size?

Quadratically!

O(n^2)

We do n operations n times

Big-O Example 5

String[] lst =
{“19”, “12”, “20”, “15”};

for (int i=0; i<100; i++) {
System.out.println(getNum(lst));

}

int getNum(int[] arr) {
return Integer.parseInt(arr[0]);

}

4/30/24 CS 131 – Spring '24 - lecture 26 17

How does the runtime grow as a function of the size
of lst?

Constant! The runtime is not affected by the number
of elements in lst

O(1)

Big-O Example 6

int[] lst = {1,2,3,4,5,6,7};

for (int i=0; i<lst.length; i++) {
findMax(lst);

}

int findMax(int[] arr) {
int max = Integer.MIN_VALUE;
for (int i=0; i<arr.length; i++) {

if (arr[i] > max) {
max = arr[i];

}
}
return max;

}

4/30/24 CS 131 – Spring '24 - lecture 26 18

How does the runtime grow as a function of the size
of lst?

O(n^2)

Programming Questions

Q1 - Problem Solving, Recursion, and Loops

Write a function called "numOccurs(int[] a, int[] b)". The function

should determine how many times the elements of a occur in b. You

can assume that both arrays will not be empty.

1. Write it recursively

2. Write it with a loop

Q2 - Classes, OOP, Arrays of Objects

Testing you on:

1. How to initialize an array as an instance variable
a. What size should I make it?

1. How to deal with dynamically sized arrays
b. What if its full when I try to add to it?

1. Make sure to avoid NPEs

1. How and when to use inheritance

Q2 - Classes, OOP, Arrays of Objects

Design and Implement a class that represents a Team. The team should
have Players each with a name. Players can either be Offense, Defense,
or Coaches. The Team class should support the following operations:

1. add: takes a player and adds them to the team
a. There is a max capacity of 2 players of each position (offense, defense)
b. Only one coach is allowed

2. trade: remove the player from the team
3. getOffense: returns a list of offensive players
4. getCoach: returns the coach’s name

Q2 - Classes, OOP, Arrays of Objects

Testing you on:

1. How to initialize an array as an instance variable
a. What size should I make it?

1. How to deal with dynamically sized arrays
b. What if its full when I try to add to it?

1. Make sure to avoid NPEs

1. How and when to use inheritance

Q3 - Problem Solving, Arrays of Arrays

Write a function called "getPerim(int[][] a)". The function should

return the an int[] of the perimeter values of a.

1 7

35 1 [1,7,35,1]

1 7 4

3 15 2

9 -1 6

35 1 3

[1,7,4,3,2,9,6,35,1,3]

Q4 -Problem Solving, Runtime Complexity, Loops

Write a method called uniqueElements() that takes in an array of integers
and returns the number of unique elements from the original array.

To receive full credit, your solution's runtime must be O(n) Partial credit will be
given for less efficient solutions. You may use additional data structures if
needed.

Q5 - dynamic array size

Write a method called maxBoard() that takes in a filename and generates a
2D array filled with ‘O’s.

The file contents will contain two row. The size of the 2D array should be [x][y]
where x is the max value in the first row and y is the max value in the second
row

