
CS 113 – Computer
Science I

Lecture 24 – Runtime
Analysis

Tuesday 12/10/2024

12/10/2024 CS 113 – Fall ‘24 - Lecture 24 1

Announcements

Mid-semester feedback survey

HW11 – due Thursday 12/12

Office hours Thursday: 2:45-4pm, and by appointment

Final: Wednesday 12/18 9:30am-12:30pm Park 238

CS 113 – Fall ‘24 - Lecture 2412/10/2024 2

Agenda

Midterm 2 Overview

Run time analysis

12/10/2024 CS 113 – Fall ‘24 - Lecture 24 3

Midterm 2

Denominator Max Median % Mean %

Fall ‘24 92 89.4 86.84 80.28

Fall ‘23 77 75.9 69.48 67.17

12/10/2024 CS 113 – Fall ‘24 - Lecture 24 4

Interfaces & Classes

Imagine class C implements interface A.

Is C a subclass of A?

No, because A is not a class, it is an interface

Instead, C is a type of A

12/10/2024 CS 113 – Fall ‘24 - Lecture 24 5

LocationsOf

Write a method locationsOf that takes in a string and a character. The
method should return a list of all locations where the character is
located in the string.

12/10/2024 CS 113 – Fall ‘24 - Lecture 24 6

LocationsOf

Approach 1:

 initialize an empty array of indices: locs

 Loop through the array

 If item at index i == needle:

 create a new tmp array of length locs.length + 1

 copy over every element from locs to tmp

 assign the value at last location of tmp to i

 locs <- tmp // reassign tmp to locs

12/10/2024 CS 113 – Fall ‘24 - Lecture 24 7

Steps to compute Big-O

How to compute Big O

1. Identify the input size: look at the number of data points (usually n)

2. Break down the algorithm:
1. Analyze loops, nested loops, function calls

3. Calculate each component
1. Count how many time operations are executed in terms of n or other

components

4. Focus on dominant Terms
1. Keep the fastest-grown term and ignore constants

12/10/2024 CS 113 – Fall ‘24 - Lecture 24 8

Example

Runtime:

12/10/2024 CS 113 – Fall ‘24 - Lecture 24 9

O(n)

O(d)

O(1)

O(n * d)

Common Patterns

Single loop through 𝑗 items:

 𝑂(𝑗)

Nested loop: outside loops 𝑓 times and inner loops 𝑒 times

 𝑂(𝑓 ∗ 𝑒)

Nested loop: outside loops 𝑚 times and inner loops 𝑚 times

 𝑂 𝑚 ∗ 𝑚 = 𝑂 𝑚2

Divide and conquer through a list originally containing 𝑞 items:

 𝑂(log2 𝑞)

12/10/2024 CS 113 – Fall ‘24 - Lecture 24 10

Example:

Runtime:

 Loop runs 𝑛 times

 Each operation inside of loop is 𝑂 1

 Total runtime: 𝑂(𝑛)

12/10/2024 CS 113 – Fall ‘24 - Lecture 24 11

Runtime:

 Outside loop runs 𝑛 times

 Middle loop runs 𝑘 times
 Inside loop runs 𝑑 times

 Each operation inside of loop is 𝑂 1
 Total runtime: 𝑂(𝑛 ∗ 𝑘 ∗ 𝑑)

Example: Matrix Multiplication

1
−6

2
5

3 −4
∗

1 2
4 3

3 1
2 1

12/10/2024 CS 113 – Fall ‘24 - Lecture 24 12

12/10/2024 CS 113 – Fall ‘24 - Lecture 24 13

Example:

Runtime:
 Outer loop runs 𝑛 times
 Inner loop runs 𝑛 times
 Each operation inside of loop is 𝑂 1
 Total runtime: 𝑂 𝑛 ∗ 𝑛 = 𝑂 𝑛2

12/10/2024 CS 113 – Fall ‘24 - Lecture 24 14

Example:

Runtime:

 Outer loop runs 𝑛 times

 Inner loop runs 𝑑 times

 Each operation inside of loop is 𝑂 1

 Total runtime: 𝑂 𝑛 ∗ 𝑑

 But, algorithm will always stop after first check

 Total runtime: 𝑂(1)

12/10/2024 CS 113 – Fall ‘24 - Lecture 24 15

LocationsOf

Approach 1:

 initialize an empty array of indices: locs

 Loop through the array

 If item at index i == needle:

 create a new tmp array of length locs.length + 1

 copy over every element from locs to tmp

 assign the value at last location of tmp to i

 locs <- tmp // reassign tmp to locs

12/10/2024 CS 113 – Fall ‘24 - Lecture 24 16

LocationsOf

Approach 2:

 initialize idxs: an empty Boolean array that is the same size as the haystack array

 initialize empty counter c

 Loop through the haystack array

 If item at index i == needle:

 idxs[i] = true

 c = c + 1

 initialize a new array result of length c

 pointer = 0

 for i in 1… length of idxs:

 if idxs[i] == true:

 result[pointer] = i

 pointer += 1

12/10/2024 CS 113 – Fall ‘24 - Lecture 24 17

Why care about Big-O

Why analyze runtimes?

• Predict how algorithms scale with larger inputs

• Compare performance of different algorithms

• Avoid inefficient solutions for real world problems

• Can compare algorithms before implementing them

12/10/2024 CS 113 – Fall ‘24 - Lecture 24 18

Key Takeaways

• Big O helps measure algo efficiency

• Break algo into steps and count operations

• Focus on dominant terms (ignore constants)

• Practice analyzing real code examples to build intuition

12/10/2024 CS 113 – Fall ‘24 - Lecture 24 19

	Slide 1: CS 113 – Computer Science I Lecture 24 – Runtime Analysis
	Slide 2: Announcements
	Slide 3: Agenda
	Slide 4: Midterm 2
	Slide 5: Interfaces & Classes
	Slide 6: LocationsOf
	Slide 7: LocationsOf
	Slide 8: Steps to compute Big-O
	Slide 9: Example
	Slide 10: Common Patterns
	Slide 11: Example:
	Slide 12: Example: Matrix Multiplication
	Slide 13
	Slide 14: Example:
	Slide 15: Example:
	Slide 16: LocationsOf
	Slide 17: LocationsOf
	Slide 18: Why care about Big-O
	Slide 19: Key Takeaways

