CS 113 — Computer
Science |

Lecture 24 — Runtime
Analysis

Tuesday 12/10/2024

CS 113 —Fall ‘24 - Lecture 24



Announcements

Mid-semester feedback survey
HW11 — due Thursday 12/12
Office hours Thursday: 2:45-4pm, and by appointment

Final: Wednesday 12/18 9:30am-12:30pm Park 238



Agenda

Midterm 2 Overview

Run time analysis



Midterm 2

-m

Fall 24 36.84 380.28

Fall 23 77 /5.9 69.48 67.17

12/10/2024 CS 113 —Fall 24 - Lecture 24 4



Interfaces & Classes

Imagine class C implements interface A.

Is C a subclass of A?

No, because A is not a class, it is an interface

Instead, C is a type of A




LocationsOf

Write a method locationsOf that takes in a string and a character. The
method should return a list of all locations where the character is
located in the string.



LocationsOf

Approach 1:

initialize an empty array of indices: locs

Loop through the array

If item at index i == needle:
create a new tmp array of length locs.length + 1
copy over every element from locs to tmp
assign the value at last location of tmp to i
locs <- tmp // reassign tmp to locs



Steps to compute Big-O

How to compute Big O
1. Identify the input size: look at the number of data points (usually n)

2. Break down the algorithm:
1. Analyze loops, nested loops, function calls

3. Calculate each component

1. Count how many time operations are executed in terms of n or other
components

4. Focus on dominant Terms
1. Keep the fastest-grown term and ignore constants



Example

for (int 1 =0; 1 < n; 1++) { O(n)
for (int j = 0; j < d; j++) { o)
System.out.println(i, j); 0(1)
}
¥
Runtime:

O(n * d)

12/10/2024 CS 113 —Fall 24 - Lecture 24



Common Patterns

Single loop through j items:

0@)

Nested loop: outside loops f times and inner loops e times

O(f *e)

Nested loop: outside loops m times and inner loops m times
O(mx*m) = 0(m?)

Divide and conquer through a list originally containing q items:
O(log, q)



Example:

for ( i =0; 1< n; i++) {
if (arr[i] == needle) {
return true:
}
}

Runtime:
Loop runs n times
Each operation inside of loop is 0(1)
Total runtime: 0 (n)

12/10/2024 CS 113 —Fall 24 - Lecture 24

11



Example: Matrix Multiplication

SRS
3 —4 : : :
§ ( 1 =0; 1< n; 1++) {
( J =90; J < k; 3++) o
( p=20; p<d; p+t) {
result[i]1[j] += A[illp] * BLpl[jl;
Runtime: ¥
Outside loop runs n times ) ;

Middle loop runs k times

Inside loop runs d times

Each operation inside of loop is 0(1)
Total runtime: O(n * k *x d)



Operations

Growth Rates of Common Big O Notations

1000

800 -

600 S

400 -

200

- O(n) - Linear
—— 0(n?) - Quadratic
—— 0Oflog n) - Logarithmic

20

40

Input Size (n)

60

gi

80 100




Example:

for 1 from 1...n
for 3 from 1...n
print(i,J)
Runtime:

Outer loop runs n times

Inner loop runs n times

Each operation inside of loop is 0(1)
Total runtime: 0(n * n) = 0(n?)



Example:

for 1 from 1...n
for j from 1...d
if 1 == j
return

Runtime:
Outer loop runs n times
Inner loop runs d times
Each operation inside of loop is 0(1)
Total runtime: O(n * d)
But, algorithm will always stop after first check

Total runtime: 0 (1)



LocationsOf

Approach 1:

initialize an empty array of indices: locs

Loop through the array

If item at index i == needle:
create a new tmp array of length locs.length + 1
copy over every element from locs to tmp
assign the value at last location of tmp to i
locs <- tmp // reassign tmp to locs



LocationsOf

Approach 2:
initialize idxs: an empty Boolean array that is the same size as the haystack array
initialize empty counter c
Loop through the haystack array
If item at index i == needle:
idxs[i] = true

c=c+1

initialize a new array result of length ¢
pointer =0
foriin 1... length of idxs:
if idxs[i] == true:
result[pointer] = i

pointer +=1



Why care about Big-O

Why analyze runtimes?

* Predict how algorithms scale with larger inputs
 Compare performance of different algorithms
* Avoid inefficient solutions for real world problems

e Can compare algorithms before implementing them



Key Takeaways

* Big O helps measure algo efficiency
* Break algo into steps and count operations
* Focus on dominant terms (ignore constants)

* Practice analyzing real code examples to build intuition



	Slide 1: CS 113 – Computer Science I  Lecture 24 – Runtime Analysis
	Slide 2: Announcements
	Slide 3: Agenda
	Slide 4: Midterm 2
	Slide 5: Interfaces & Classes
	Slide 6: LocationsOf
	Slide 7: LocationsOf
	Slide 8: Steps to compute Big-O
	Slide 9: Example
	Slide 10: Common Patterns
	Slide 11: Example:
	Slide 12: Example: Matrix Multiplication
	Slide 13
	Slide 14: Example:
	Slide 15: Example:
	Slide 16: LocationsOf
	Slide 17: LocationsOf
	Slide 18: Why care about Big-O
	Slide 19: Key Takeaways

