
CS 113 – Computer
Science I

Lecture 23 – Midterm 2
Review

Thursday 4/18/2024

CS 131 – Spring '24 - lecture 234/18/24 1

Announcements

Midterm next week (Tuesday April 23rd)

HW8 and Lab8 due tonight

No lab today - extra credit opportunity instead

No OH next two Fridays (4/19 and 4/26)

CS 131 – Spring '24 - lecture 234/18/24 2

Midterm 2

10 points multiple choice

10 points short answer

60 points programming

15 points reading code

80min

1 page cheat sheet front and back

3

Midterm 2 Topics

1. Arrays of Arrays
2. Nested Loops
3. Truth tables
4. Mutability
5. Classes

a. constructors, accessors, modifiers, instance variables, this keyword
6. equals
7. toString
8. Statics vs non-static
9. OOP

a. super keyword
b. Access modifiers
c. Inheritance and polymorphism

10. try-catch
11. interfaces

4

Inheritance

A class inherits variables and methods from an existing class.

The existing class is referred to as the superclass or parent class, and
the new class is referred to as the subclass or child class.

Allows for code reuse

is a relationship

public class Bird extends Animal { ... }

Inheritance

SuperClass c = new SubClass(); //allowed

SubClass c2 = new SuperClass(); //not allowed

Hierarchy.java

can you extend from more than one class?

6

super keyword

super();
reference variable that is used to refer parent class

constructors

Note:
 super:

reference variable that is used to refer parent class object

CS 113 – Spring '24 - Lecture 17

Access modifiers

Specify the access-level of instance variables/methods

• public
• code outside of the class can access the variable/method

• private
• code outside of the class cannot access the variable/method

• protected
• only subclasses and current class can access the variable/method

Default in java is public

In this class, make instance data private

3/26/24 CS 131 – Spring '24 - Lecture 16 8

Access Modifiers
You are developing a system to manage employees in a company. Implement the
following classes according to the given specifications:

1. Create an Employee class with the following methods:
○ void introduce() - Prints "Hello, I am an employee."

1. Extend the Employee class to create a Manager class with the following additional
method:
○ void manage() - Prints "I am managing tasks."
○ Only Manager and Executive should be able to call manage()

1. Extend the Manager class to create an Executive class with the following
additional method:
○ void makeDecisions() - Prints "I am making decisions for the company."

9

Access Modifiers

Can a protected method in the superclass be called from a public
method in the subclass?

Mini Example: Foo, M, and Bar

10

Object Oriented Programming

You are tasked with developing a program to
manage fruits in a grocery store.

1. Fruit Class:

● Instance variables: name, color: Represents
the color of the fruit.

● Constructor: value constructor

2. Apple Class:

● Additional instance variable: type (String)
● Constructor: value constructor
● Implement the equals method inherited from

the Fruit class to compare apples based on
their name, color, and type.

11

3. Banana Class:

● Additional instance variable: length
(double)

● Constructor: value constructor
● Implement the equals method inherited

from the Fruit class to compare bananas
based on their name, color, and length.

Polymorphism

What is polymorphism?

Program can treat all objects that extend a base class the same

12

Polymorphism

Develop a Java program that demonstrates polymorphism using musical instruments.

Create a superclass called Instrument with a method play() that simply prints "Playing
an instrument".

Then, create two subclasses: Guitar and Piano, each overriding the play() method to
print "Strumming a guitar" and "Playing a piano" respectively.

In the main() method of your program, create an array of Instrument objects containing
instances of both Guitar and Piano. Iterate through the array and call the play()
method for each object.

13

Arrays of Objects

Problem: Implementing a Movie Database

Task 1: Define a Java class named Movie with the following specifications:

● The class should have private instance variables for title, director, genre, and year.
● Implement a constructor that takes parameters for initializing all instance variables.
● Implement getter methods for all instance variables.
● displayDetails() that prints out all the details of the movie.

Task 2: Define a Java class named MovieDatabase with the following specifications:

● The class should have a private instance variable to store an array of Movie objects.
● Implement a constructor that takes an integer parameter size to initialize the array size.
● addMovie(Movie m) add a new Movie object to the database.
● searchByTitle(String title) prints out details of the movie with matching title, if found.
● searchByDirector(String director) prints out details of all movies directed by the specified director,

if any.
● displayAllMovies() that prints out details of all movies in the database

14

Interfaces

• An interface is a contract - A set of shared methods that users must implement

• create a program to calculate the area of different shapes, such as circles,
rectangles, triangles etc.

• For each shape, you should be able to print the shape name and area

• Every time someone adds a new shape, they must include the methods for
getName() and getArea()

15

Interfaces

• For any new shape that is created, we want to enforce that these
methods are also implemented.

16

interface Shape {
 public double getArea();
 public String getName();
}

class Circle implements Shape {

Interfaces

A contract - A set of shared methods that users must implement

A collection of method signatures with no bodies

A class can implement more than one interface

17

Interfaces

An interface is not a class!

A class is what an object is

An interface is what an object does
can not be instantiated
no constructors
incomplete methods

18 CS151 - Lecture 07 - Spring '2402/07/24

Interfaces

Example: implement the Building interface

19

Interfaces

Make a Hammer class and a Screwdriver class which implement
two interfaces: Maintainable and Usable

20

Inheritance vs Interfaces

Each of these lines is related to either interfaces or inheritance...

• extends keyword
• guarantees a class has implemented certain methods
• implements keyword
• reuses implementations
• is-a relationship
• specifies what a class does

Exceptions

What is an exception?

What are some exceptions you have encountered?

22

Exceptions

Handling exceptions

try {
 some code where errors may occur
} catch (<some exception> <variable>) {
 some corrective action you could perform
}

23

Exceptions

Write code to:

1. Initialize an array
2. Ask the user for an input index
3. If the index is out of bounds print “oh no!”

a. make sure an exception is not thrown

24

Exceptions

Write code to:

1. Ask the user for two numbers
2. If the index is out of bounds print “oh no!”

a. make sure an exception is not thrown

25

try-catch

TryCatchExample.java

What will be printed?

26

try-catch

1. Read data from a text file named "input.txt".
2. Read each line from the file and process it according to the following rules:

○ If the line starts with "ADD", extract the following number and add it to a running total.
○ If the line starts with "SUB", extract the following number and subtract it from the

running total.
○ If the line starts with "MUL", extract the following number and multiply it with the

running total.
○ If the line starts with "DIV", extract the following number and divide the running total by

it (handle division by zero gracefully).
○ Ignore any lines that do not conform to the above rules.

3. Display the final result of the operations performed on the data.

27

