
CS 113 – Computer
Science I

Lecture 22 – Midterm 2
Review

Tuesday 4/16/2024

CS 131 – Spring '24 - Lecture 224/16/24 1

Announcements

Midterm next week (Tuesday April 23rd)

No lab on Thursday - extra credit opportunity instead

No OH next two Fridays (4/19 and 4/26)

CS 131 – Spring '24 - Lecture 224/16/24 2

Midterm 2

10 points multiple choice

10 points short answer

60 points programming

15 points reading code

80min

1 page cheat sheet front and back

3

Midterm 2 Topics

1. Arrays of Arrays
2. Nested Loops
3. Truth tables
4. Mutability
5. Classes

a. constructors, accessors, modifiers, instance variables, this keyword
6. equals
7. toString
8. Statics vs non-static
9. OOP

a. super keyword
b. Access modifiers
c. Inheritance and polymorphism

10. try-catch
11. interfaces

4

Arrays of Arrays

int[] array1 is an array of ints

String[] array2 is an array of Strings

What is int[][] array3?

An array of integer arrays

What is String[][] array4?

An array of String arrays

02/29/24 CS 131 – Spring '24 - Lecture 12 5

2D array example

What does int[][] array = new int[4][3] look like?

02/29/24 CS 131 – Spring '24 - Lecture 12 6

2D array example

What does int[][] array = new int[4][3] look like?

02/29/24 CS 131 – Spring '24 - Lecture 12 7

Arrays of Arrays

a) Write a line of Java code to access and print the element in the
second row and third column of the matrix.

b) Write a line of Java code to calculate and print the sum of all
elements in the matrix.

c) Write a line of Java code to check if the element at the second row
and third column is equal to 6. Your code should print "true" if it is and
"false" otherwise.

8

Arrays of Arrays

Write a program to check if all chars in a matrix of chars are vowels

9

Arrays of Arrays

You are tasked with creating a Java program to manage a simple locker system. The lockers are
arranged in rows and columns, and each locker can be either empty or occupied.

You plan to implement the following functionalities:

1. Initialization: Write a method to initialize the locker system with a given number of rows and
columns, filling it with default values indicating empty lockers (e.g., 'O' for empty and 'X' for
occupied).

2. Locker Occupancy: Write a method to change the occupancy status of a specific locker
(i.e., mark it as occupied or empty). If the locker is already in the desired state, print an
appropriate message.

3. Check Locker Status: Write a method to check the occupancy status of a specific locker.
4. Display: Write a method to display the current state of the locker system, showing which

lockers are occupied and which are empty.

10

Truth Tables

11

12

13

T

err

T

T or err

F

T

F

err

T
F

Truth Tables

TruthTables.java

14

Mutability

15

Mutable vs Immutable

Mutable:
Values can change
methods can change the state of the object directly

Immutable:
Values cannot change
Instead, any operations that would alter the object's state return a
new object with the modified state

Strings and Integers are immutable

03/19/24 CS 131 – Spring '24 - Lecture 14 16

Mutable vs Immutable

claim: Strings and Integers are immutable

code!

The underlying value can change, but this will create a new object

17

Mutable vs Immutable Classes

Are the following mutable or immutable?

Student.java

StudentCourse.java

Instructor.java

18

Classes

19

Classes

1. constructors
2. instance variables
3. accessors
4. modifiers
5. this keyword

20

Constructors

- Special method with same name as the class

- Initializes the newly created object

21

Creating objects

How do we create a new object of our class type?

Create by calling constructor using `new`

Scanner sc = new Scanner(System.in);

Instructor i = new Instructor(“elizabeth”, “Park”, 205)

03/21/24 CS 131 – Spring '24 - Lecture 15 22

Constructors

What is a default constructor?

Constructor which takes no arguments

What is a value constructor?

Constructor that takes arguments and sets instance variables based

on the inputs

23

Classes

1. constructors
2. instance variables
3. accessors
4. modifiers
5. this keyword
6. super keyword

24

Instance Variables

Declared in a class but outside of any method

Instance variables belong to a specific instance of a class

What are the instance variables in Instructor.java

25

Classes

1. constructors
2. instance variables
3. accessors
4. modifiers
5. this keyword

26

Accessors

What are accessors?

- Also called getters

- Return the value of instance variables

- Usually named getVar where Var is the name of the variable we
want to access

- What are the accessors in Instructor.java?

27

Classes

1. constructors
2. instance variables
3. accessors
4. modifiers
5. this keyword

28

Modifiers

- also called setters

- changes the value of instance variables

- usually named setVar where Var is the name of the variable we
want to modify

- what are the modifiers in Instructor.java

29

Classes

1. constructors
2. instance variables
3. accessors
4. modifiers
5. this keyword
6. super keyword

30

this

this is a special keyword that refers to the object inside an instance
method

Allows us to access other instance variables within an instance method

3/26/24 CS 131 – Spring '24 - Lecture 16 31

equals

Comparing two objects with == compares their memory addresses

Compare Strings with .equals()

- Strings are objects!

Custom equals for objects:

public boolean equals(Object o)

32

toString

- returns a String representation of the object
- toString.java

33

Static vs Non Static

34

Static vs Non Static

Static:

Belongs to the class rather than to
any particular instance of the class

Can be invoked without the need
for creating an instance of the
class

35

Non Static (instance):

Belongs to the object (instance) of
the class

Can be invoked only through an
instance of the class.

Static vs Non Static

Objects can have either static or instance methods

static methods use syntax <ClassName>.<methodName>

instance methods use syntax <object>.<methodName>

36

Static

Create a class MathUtils with a static method
factorial(n) that calculates the factorial of a given
number n. Demonstrate its usage in the main method by
calculating the factorial of a few numbers.

37

Inheritance

A class inherits variables and methods from an existing class.

The existing class is referred to as the superclass or parent class, and
the new class is referred to as the subclass or child class.

Allows for code reuse

is a relationship

public class Bird extends Animal { ... }

Inheritance

SuperClass c = new SubClass(); //allowed

SubClass c2 = new SuperClass(); //not allowed

Hierarchy.java

can you extend from more than one class?

39

super keyword

super();
reference variable that is used to refer parent class

constructors

Note:
 super:

reference variable that is used to refer parent class object

CS 113 – Spring '24 - Lecture 17

Access modifiers

Specify the access-level of instance variables/methods

• public
• code outside of the class can access the variable/method

• private
• code outside of the class cannot access the variable/method

• protected
• only subclasses and current class can access the variable/method

Default in java is public

In this class, make instance data private

3/26/24 CS 131 – Spring '24 - Lecture 16 41

Access Modifiers
You are developing a system to manage employees in a company. Implement the
following classes according to the given specifications:

1. Create an Employee class with the following methods:
○ void introduce() - Prints "Hello, I am an employee."

2. Extend the Employee class to create a Manager class with the following additional
method:
○ void manage() - Prints "I am managing tasks."
○ Only Manager and Executive should be able to call manage()

3. Extend the Manager class to create an Executive class with the following
additional method:
○ void makeDecisions() - Prints "I am making decisions for the company."

42

Access Modifiers

Can a protected method in the superclass be called from a public
method in the subclass?

Mini Example: Foo, M, and Bar

43

Object Oriented Programming

You are tasked with developing a program to
manage fruits in a grocery store.

1. Fruit Class:

● Instance variables: name, color: Represents
the color of the fruit.

● Constructor: value constructor

2. Apple Class:

● Additional instance variable: type (String)
● Constructor: value constructor
● Implement the equals method inherited from

the Fruit class to compare apples based on
their name, color, and type.

44

3. Banana Class:

● Additional instance variable: length
(double)

● Constructor: value constructor
● Implement the equals method inherited

from the Fruit class to compare bananas
based on their name, color, and length.

Polymorphism

What is polymorphism?

Program can treat all objects that extend a base class the same

45

Polymorphism

Develop a Java program that demonstrates polymorphism using musical instruments.

Create a superclass called Instrument with a method play() that simply prints "Playing
an instrument".

Then, create two subclasses: Guitar and Piano, each overriding the play() method to
print "Strumming a guitar" and "Playing a piano" respectively.

In the main() method of your program, create an array of Instrument objects containing
instances of both Guitar and Piano. Iterate through the array and call the play()
method for each object.

46

Arrays of Objects

Problem: Implementing a Movie Database

Task 1: Define a Java class named Movie with the following specifications:

● The class should have private instance variables for title, director, genre, and year.
● Implement a constructor that takes parameters for initializing all instance variables.
● Implement getter methods for all instance variables.
● displayDetails() that prints out all the details of the movie.

Task 2: Define a Java class named MovieDatabase with the following specifications:

● The class should have a private instance variable to store an array of Movie objects.
● Implement a constructor that takes an integer parameter size to initialize the array size.
● addMovie(Movie m) add a new Movie object to the database.
● searchByTitle(String title) prints out details of the movie with matching title, if found.
● searchByDirector(String director) prints out details of all movies directed by the specified director,

if any.
● displayAllMovies() that prints out details of all movies in the database

47

Interfaces

• An interface is a contract - A set of shared methods that users must implement

• create a program to calculate the area of different shapes, such as circles,
rectangles, triangles etc.

• For each shape, you should be able to print the shape name and area

• Every time someone adds a new shape, they must include the methods for
getName() and getArea()

48

Interfaces

• For any new shape that is created, we want to enforce that these
methods are also implemented.

49

interface Shape {
 public double getArea();
 public String getName();
}

class Circle implements Shape {

Interfaces

A contract - A set of shared methods that users must implement

A collection of method signatures with no bodies

A class can implement more than one interface

50

Interfaces

An interface is not a class!

A class is what an object is

An interface is what an object does
can not be instantiated
no constructors
incomplete methods

51 CS151 - Lecture 07 - Spring '2402/07/24

Interfaces

Example: implement the Building interface

52

Interfaces

Make a Hammer class and a Screwdriver class which implement
two interfaces: Maintainable and Usable

53

Inheritance vs Interfaces

Each of these lines is related to either interfaces or inheritance...

• extends keyword
• guarantees a class has implemented certain methods
• implements keyword
• reuses implementations
• is-a relationship
• specifies what a class does

Exceptions

What is an exception?

What are some exceptions you have encountered?

55

Exceptions

Handling exceptions

try {
 some code where errors may occur
} catch (<some exception> <variable>) {
 some corrective action you could perform
}

56

Exceptions

Write code to:

1. Initialize an array
2. Ask the user for an input index
3. If the index is out of bounds print “oh no!”

a. make sure an exception is not thrown

57

Exceptions

Write code to:

1. Ask the user for two numbers
2. If the index is out of bounds print “oh no!”

a. make sure an exception is not thrown

58

try-catch

TryCatchExample.java

What will be printed?

59

try-catch

1. Read data from a text file named "input.txt".
2. Read each line from the file and process it according to the following rules:

○ If the line starts with "ADD", extract the following number and add it to a running total.
○ If the line starts with "SUB", extract the following number and subtract it from the

running total.
○ If the line starts with "MUL", extract the following number and multiply it with the

running total.
○ If the line starts with "DIV", extract the following number and divide the running total by

it (handle division by zero gracefully).
○ Ignore any lines that do not conform to the above rules.

3. Display the final result of the operations performed on the data.

60

