
CS 113 – Computer
Science I

Lecture 21 – Binary
Search II

Tuesday 4/11/2024

CS 131 – Spring '24 - Lecture 214/11/24 1

Announcements

HW7 – Class Design and Lab7 due tonight
HW8 will be released tonight

CS 131 – Spring '24 - Lecture 214/11/24 2

Outline

• Binary Search Review

• Sorting
• Bubble Sort
• Selection Sort

4/11/24 CS 131 – Spring '24 - Lecture 21 3

Binary Search

• What is linear search?
• Why is it inefficient?

• What is binary search?
• Why is it more efficient?
• What does it require about the list we are searching?

4

Binary Search

1. Calculate midpoint

2. Compare the value at the midpoint with the target value
a. if equal:

i. return index
b. if target value < midpoint value:

i. search the left portion of the list
c. if target value > midpoint value:

i. search the right portion of the list

5 CS151 - Lecture 10 - Spring '2402/21/24

Binary Search

Search for an integer (22) in an ordered list

6 CS151 - Lecture 10 - Spring '2402/21/24

target = 22

7 CS151 - Lecture 10 - Spring '2402/21/24

target = 22

8 CS151 - Lecture 10 - Spring '2402/21/24

target = 22

9 CS151 - Lecture 10 - Spring '2402/21/24

target = 22

10 CS151 - Lecture 10 - Spring '2402/21/24

Binary search
String[] ls = {-20, -4, 44, 58, 99, 145}

Search for 99

low mid high ls[mid]

4/4/24 CS 131 – Spring '24 - Lecture 19 11

Binary search w/ Strings

String[] ls = {"bear", "bird", "bug", "cat", "cow", "dog", "fish, "lion“};

Search for “cow”

low mid high ls[mid]

4/4/24 CS 131 – Spring '24 - Lecture 19 12

Binary Search Implementation

13

Binary Search Runtime

• In Linear Search how do the # of checks increase as a function of the
of elements in the list?

• If we have 1 element in the list how many checks will we do?
• What about 100 elements?
• 1000?
• 1mil?
• Checks increase linearly with the # of elements

14

Binary Search Runtime

• In Binary Search how do the # of checks increase as a function of
the # of elements in the list?

• If we have 8 element in the list how many checks will we do?
• What about 16 elements?
• 32?
• 64?
• Checks increase logarithmically with the # of elements

• Time increases by log
2

n. Why?

15

Runtime Complexity

Analyzing runtime complexity is an important aspect of computer
science.

We analyze the runtime as a function of the input size

Consider the worst case

16

Outline

• Binary Search

• Sorting
• Bubble Sort
• Selection Sort

4/11/24 CS 131 – Spring '24 - Lecture 21 17

Who do we care about sorting?

1. Makes searching faster
a. Binary search!

2. Efficient data retrieval
a. In many cases we want to print things in some order (alphabetical names,

increasing scores etc)

3. Fundamental in the way computers work
a. Operating systems
b. Data structures (arrays, etc)
c. ...

4/11/24 CS 131 – Spring '24 - Lecture 21 18

Sorting

10 4 3 0 11 8

0 1 2 3 4 5

How might we sort the list of numbers below in ascending order?

19

Bubble Sort

● Step through the input list element by element

● Compare the element with the one next to it
○ Swap values if needed

● Larger elements “bubble” to the back of the list

20

Bubble Sort

1. Start with the first element in the list
2. Compare the cur element with the next element
3. If cur > next, swap them
4. Move to the next pair of elements and repeat steps 2 and 3 until the end

of the list is reached.
5. Repeat

21

Bubble Sort

10 4 3 0 11 8

0 1 2 3 4 5

What do we do first?

22

Bubble Sort
0 1 2 3 4 5

j - 1
0

Compare j-1 and j; Swap if L[j-1] > L[j]

len = 6

What next?

j
0

10 4 3 0 11 8

23

Bubble Sort
0 1 2 3 4 5

j - 1
0

Compare j-1 and j; Swap if L[j-1] > L[j]

len = 6

What next?

j
1

4 10 3 0 11 8

24

Bubble Sort
0 1 2 3 4 5

j - 1
1

Compare j-1 and j; Swap if L[j-1] > L[j]

len = 6

What next?

j
2

4 10 3 0 11 8

25

Bubble Sort
0 1 2 3 4 5

j - 1
1

Compare j-1 and j; Swap if L[j-1] > L[j]

len = 6

What next?

j
2

4 3 10 0 11 8

26

Bubble Sort
0 1 2 3 4 5

j - 1
2

Compare j-1 and j; Swap if L[j-1] > L[j]

len = 6

What next?

j
3

4 3 10 0 11 8

27

Bubble Sort
0 1 2 3 4 5

j - 1
2

Compare j-1 and j; Swap if L[j-1] > L[j]

len = 6

What next?

j
3

4 3 0 10 11 8

28

Bubble Sort
0 1 2 3 4 5

j - 1
3

Compare j-1 and j; Swap if L[j-1] > L[j]

len = 6

What next?

j
4

4 3 0 10 11 8

29

Bubble Sort
0 1 2 3 4 5

j - 1
4

Compare j-1 and j; Swap if L[j-1] > L[j]

len = 6

What next?

j
5

4 3 0 10 11 8

30

Bubble Sort
0 1 2 3 4 5

j - 1
4

Compare j-1 and j; Swap if L[j-1] > L[j]

len = 6

What next?

j
5

4 3 0 10 8 11

31

Bubble Sort
0 1 2 3 4 5

j - 1
0

Reset and compare pairs with shorter list!

len = 5

What next?

j
1

4 3 0 10 8 11

Last element has
largest element!

32

Bubble Sort
0 1 2 3 4 5

j - 1
0

Compare j-1 and j; Swap if L[j-1] > L[j]

len = 5

What next?

j
1

3 4 0 10 8 11

Last element has
largest element!

33

Bubble Sort
0 1 2 3 4 5

j - 1
1

Compare j-1 and j; Swap if L[j-1] > L[j]

len = 5

What next?

j
2

3 4 0 10 8 11

34

Bubble Sort
0 1 2 3 4 5

j - 1
1

Compare j-1 and j; Swap if L[j-1] > L[j]

len = 5

What next?

j
2

3 0 4 10 8 11

35

Bubble Sort
0 1 2 3 4 5

j - 1
2

Compare j-1 and j; Swap if L[j-1] > L[j]

len = 5

What next?

j
3

3 0 4 10 8 11

36

Bubble Sort
0 1 2 3 4 5

j - 1
3

Compare j-1 and j; Swap if L[j-1] > L[j]

len = 5

What next?

j
4

3 0 4 10 8 11

37

Bubble Sort
0 1 2 3 4 5

j - 1
3

Compare j-1 and j; Swap if L[j-1] > L[j]

len = 5

What next?

j
4

3 0 4 8 10 11

38

Bubble Sort
0 1 2 3 4 5

j - 1
0

Reset and check pairs with shorter list

len = 4

What next?

j
1

3 0 4 8 10 11

39

Bubble Sort
0 1 2 3 4 5

j - 1
0

Compare j-1 and j; Swap if L[j-1] > L[j]

len = 4

What next?

j
1

0 3 4 8 10 11

40

Bubble Sort
0 1 2 3 4 5

j - 1
1

Compare j-1 and j; Swap if L[j-1] > L[j]

len = 4

What next?

j
2

0 3 4 8 10 11

41

Bubble Sort
0 1 2 3 4 5

j - 1
2

Compare j-1 and j; Swap if L[j-1] > L[j]

len = 4

What next?

j
3

0 3 4 8 10 11

42

Bubble Sort
0 1 2 3 4 5

j - 1
0

Reset; Compare j-1 and j; Swap if L[j-1] > L[j]

len = 3

What next?

j
1

0 3 4 8 10 11

43

Bubble Sort
0 1 2 3 4 5

j - 1
0

Reset; Compare j-1 and j; Swap if L[j-1] > L[j]

len = 3

What next?

j
1

0 3 4 8 10 11

44

Bubble Sort
0 1 2 3 4 5

j - 1
0

Reset; Compare j-1 and j; Swap if L[j-1] > L[j]

len = 2

What next?

j
1

0 3 4 8 10 11

45

Bubble Sort Implementation

46

Runtime Complexity

● Linear search grows linearly
● Binary search grows logarithmically

● Complexity of bubble sort?
○ How many comparisons do we make if there are 5 elements?
○ What about 10 elements?
○ Grows quadratically!

47

Selection Sort

4/11/24 CS 131 – Spring '24 - Lecture 21 48

Selection Sort

In place sorting algorithm

1. Separate the array into “sorted” and “unsorted”
a. sorted starts empty

2. Find the min element in the unsorted array
3. Swap min with the first element in unsorted
4. repeat

49

Selection Sort Implementation

50

Runtime Complexity

● Linear search grows linearly
● Binary search grows logarithmically
● Bubble sort grows quadratically

● Complexity of selection sort?

51

Selection sort and Bubble sort are O(N2)

L sizes from 100 to 2000

Ti
m

e
in

 m
ill

is
ec

o
n

d
s

52

