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Announcements

HW 10 – Due Monday 11/25

 Object Oriented Programming:

 Inheritance & Interface

Mid-semester feedback form: https://forms.gle/Ed7G9oe74QQBT5sy5

Midterm 2: Thursday December 5th

Final: Wednesday 12/18 9:30am-12:30pm Park 238
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Linear Search 

These previous approaches are examples of linear search

Check each item in a collection one by one

Why is this call linear search?

 Time it takes to search increases linearly with the size of the list
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Binary Search 

If we could change the list, is there a way to search more efficiently?

Yes, if the list is sorted
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Binary Search 

Assuming list is sorted in ascending order

High-level Algorithm:

• Step 1: Find the midpoint of the list:
• if the search value is at the midpoint – we are done! 

• if the value we are searching for is above the midpoint, 
• Search right: cut our list in half and repeat step 1 with the right half of the list

• If the value we are searching for is below the midpoint
• Search left: cut out list in half and repeat step 1 with the left half of the list
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Binary Search – Initial Values 

lowIndex, highIndex, midIndex

If value at midIndex== searchValue:

 Success!

If value at midIndex < searchValue:

  lowIndex = midIndex + 1

    update midIndex 

If value at midIndex > searchValue:

  highIndex = midIndex – 1

    update midIndex
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Binary search w/ Strings  

String[] ls = {"bear", "bird", "bug", "cat", "cow", "dog", "fish, "lion“};
 
Search for “cow”

low mid high ls[mid]
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Binary search w/ Strings  

String[] ls = {"bear", "bird", "bug", "cat", "cow", "dog", "fish, "lion“};
 
Search for “cow”

low mid high ls[mid]

0 3 7 “cat”
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Binary search w/ Strings  

String[] ls = {"bear", "bird", "bug", "cat", "cow", "dog", "fish, "lion“};
 
Search for “cow”

low mid high ls[mid]

0 3 7 “cat”

4 5 7 “dog”
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Binary search w/ Strings  

String[] ls = {"bear", "bird", "bug", "cat", "cow", "dog", "fish, "lion“};
 
Search for “cow”

low mid high ls[mid]

0 3 7 “cat”

4 5 7 “dog”

4 4 4 “cow”! 
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Binary search 
String[] ls = {"bear", "bird", "bug", "cat", "cow", "dog", "fish, "lion“};
 
Search for “elephant”

low mid high ls[mid]
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Binary search 
String[] ls = {"bear", "bird", "bug", "cat", "cow", "dog", "fish, "lion“};
 
Search for “elephant”

low mid high ls[mid]

0 3 7 “cat”
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Binary search 
String[] ls = {"bear", "bird", "bug", "cat", "cow", "dog", "fish, "lion“};
 
Search for “elephant”

low mid high ls[mid]

0 3 7 “cat”

4 5 7 “dog”
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Binary search 
String[] ls = {"bear", "bird", "bug", "cat", "cow", "dog", "fish, "lion“};
 
Search for “elephant”

low mid high ls[mid]

0 3 7 “cat”

4 5 7 “dog”

6 6 7 “fish”
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Binary search 
String[] ls = {"bear", "bird", "bug", "cat", "cow", "dog", "fish, "lion“};
 
Search for “elephant”

low mid high ls[mid]

0 3 7 “cat”

4 5 7 “dog”

6 6 7 “fish”

6 5
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Binary Search 

If the list is sorted in ascending order, we don’t need to consider every 
element.

Which element should we check?

 The middle

If the middle element isnt what we are looking for, what should we do?

 Chop the search space in half (this is why its called binary search)
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Binary Search run time

As the size of our collection increases, the number of guesses/comparisons 
increases, but not linearly

The time increases by log 𝑛 we use base 2 . Why?

 Because we cut our search space in half each time

If our collection contains 8 data points, how many comparisons in worst case do we 
make:
 log2 8 = 3
If our collection contains 512 data points, how many comparisons in worst case do 
we make:

  log2 512 = 9
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Outline

• Binary Search

• Sorting
• Bubble Sort

• Selection Sort
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Who do we care about sorting?

Makes searching faster!

Efficient sorting is important for optimizing 

the efficiency of other algorithms (such 

as search and merge algorithms) that require input data 

to be in sorted lists. Sorting is also often useful 

for canonicalizing data and for producing human-

readable output.
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https://en.wikipedia.org/wiki/Sorting
https://en.wikipedia.org/wiki/Algorithmic_efficiency
https://en.wikipedia.org/wiki/Search_algorithm
https://en.wikipedia.org/wiki/Merge_algorithm
https://en.wikipedia.org/wiki/Canonicalization


ChatGPT’s 
response: 

Covered in data 
structures, next 

semester!
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Sorting

10 4 3 0 11 8

0 1 2 3 4 5

How might we sort the list of numbers below.
Can we come up with an algorithm?

21



Bubble Sort

Compare two adjacent items, and swap if needed

Repeat until largest item is at the back

Repeat process until done
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Bubble Sort

10 4 3 0 11 8

0 1 2 3 4 5

What do we do first?
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Bubble Sort
0 1 2 3 4 5

j - 1
0

Compare j-1 and j; Swap if L[j-1] > L[j]

len = 6

What next?

j 
0

10 4 3 0 11 8
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Bubble Sort
0 1 2 3 4 5

j - 1
0

Compare j-1 and j; Swap if L[j-1] > L[j]

len = 6

What next?

j 
1

4 10 3 0 11 8
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Bubble Sort
0 1 2 3 4 5

j - 1
1

Compare j-1 and j; Swap if L[j-1] > L[j]

len = 6

What next?

j 
2

4 10 3 0 11 8
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Bubble Sort
0 1 2 3 4 5

j - 1
1

Compare j-1 and j; Swap if L[j-1] > L[j]

len = 6

What next?

j 
2

4 3 10 0 11 8
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Bubble Sort
0 1 2 3 4 5

j - 1
2

Compare j-1 and j; Swap if L[j-1] > L[j]

len = 6

What next?

j 
3

4 3 10 0 11 8
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Bubble Sort
0 1 2 3 4 5

j - 1
2

Compare j-1 and j; Swap if L[j-1] > L[j]

len = 6

What next?

j 
3

4 3 0 10 11 8
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Bubble Sort
0 1 2 3 4 5

j - 1
3

Compare j-1 and j; Swap if L[j-1] > L[j]

len = 6

What next?

j 
4

4 3 0 10 11 8
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Bubble Sort
0 1 2 3 4 5

j - 1
4

Compare j-1 and j; Swap if L[j-1] > L[j]

len = 6

What next?

j 
5

4 3 0 10 11 8
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Bubble Sort
0 1 2 3 4 5

j - 1
4

Compare j-1 and j; Swap if L[j-1] > L[j]

len = 6

What next?

j 
5

4 3 0 10 8 11
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Bubble Sort
0 1 2 3 4 5

j - 1
0

Reset and compare pairs with shorter list!

len = 5

What next?

j 
1

4 3 0 10 8 11

Last element has 
largest element!
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Bubble Sort
0 1 2 3 4 5

j - 1
0

Compare j-1 and j; Swap if L[j-1] > L[j]

len = 5

What next?

j 
1

3 4 0 10 8 11

Last element has 
largest element!
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Bubble Sort
0 1 2 3 4 5

j - 1
1

Compare j-1 and j; Swap if L[j-1] > L[j]

len = 5

What next?

j 
2

3 4 0 10 8 11
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Bubble Sort
0 1 2 3 4 5

j - 1
1

Compare j-1 and j; Swap if L[j-1] > L[j]

len = 5

What next?

j 
2

3 0 4 10 8 11
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Bubble Sort
0 1 2 3 4 5

j - 1
2

Compare j-1 and j; Swap if L[j-1] > L[j]

len = 5

What next?

j 
3

3 0 4 10 8 11
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Bubble Sort
0 1 2 3 4 5

j - 1
3

Compare j-1 and j; Swap if L[j-1] > L[j]

len = 5

What next?

j 
4

3 0 4 10 8 11

38



Bubble Sort
0 1 2 3 4 5

j - 1
3

Compare j-1 and j; Swap if L[j-1] > L[j]

len = 5

What next?

j 
4

3 0 4 8 10 11
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Bubble Sort
0 1 2 3 4 5

j - 1
0

Reset and check pairs with shorter list

len = 4

What next?

j 
1

3 0 4 8 10 11
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Bubble Sort
0 1 2 3 4 5

j - 1
0

Compare j-1 and j; Swap if L[j-1] > L[j]

len = 4

What next?

j 
1

0 3 4 8 10 11
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Bubble Sort
0 1 2 3 4 5

j - 1
1

Compare j-1 and j; Swap if L[j-1] > L[j]

len = 4

What next?

j 
2

0 3 4 8 10 11
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Bubble Sort
0 1 2 3 4 5

j - 1
2

Compare j-1 and j; Swap if L[j-1] > L[j]

len = 4

What next?

j 
3

0 3 4 8 10 11
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Bubble Sort
0 1 2 3 4 5

j - 1
0

Reset; Compare j-1 and j; Swap if L[j-1] > L[j]

len = 3

What next?

j 
1

0 3 4 8 10 11
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Bubble Sort
0 1 2 3 4 5

j - 1
0

Reset; Compare j-1 and j; Swap if L[j-1] > L[j]

len = 3

What next?

j 
1

0 3 4 8 10 11
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Bubble Sort
0 1 2 3 4 5

j - 1
0

Reset; Compare j-1 and j; Swap if L[j-1] > L[j]

len = 2

What next?

j 
1

0 3 4 8 10 11
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Bubble Sort

Idea: bubble highest values to the end of the list; Check a shorter sublist 
each time

bubbleSort(L):

 for len in [L.length, 1): 

  for j in [1, len): # bubble

   if L[j-1] > L[j]:

    swap(j-1, j, L)
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Bubble sort

swap(i, j, L):

 temp = L[i] # step 1

 L[i] = L[j]    # step 2

 L[j] = temp # step 3

Temp i j

Temp i j

Temp i j

Temp i j
48



Selection Sort
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Selection sort

Repeatedly find the smallest item and put it at front of list

selectionSort(L):

for startIdx in range(len(L)):

 minIdx = findMinimum(startIdx, L)

 swap(startIdx, minIdx, L)
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Selection Sort

10 4 3 0 11 8

0 1 2 3 4 5

What do we do first?
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Selection Sort
0 1 2 3 4 5

start
0

Find minimum element idx between start to end

10 4 3 0 11 8

What next?

minIdx
3
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Selection Sort
0 1 2 3 4 5

start
0

Swap the elements at start and minIdx

0 4 3 10 11 8

What next?

minIdx
3
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Selection Sort
0 1 2 3 4 5

start
1

Decrease the interval.

0 4 3 10 11 8

What next? 54



Selection Sort
0 1 2 3 4 5

start
1

Find minimum element between start to end

0 4 3 10 11 8

What next?

minIdx
2
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Selection Sort
0 1 2 3 4 5

start
1

Swap the elements at start and minIdx

0 3 4 10 11 8

What next?

minIdx
2
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Selection Sort
0 1 2 3 4 5

start
2

Decrease the interval.

0 3 4 10 11 8

What next? 57



Selection Sort
0 1 2 3 4 5

start
2

Find minimum element idx between start to end

0 3 4 10 11 8

What next?

minIdx
2
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Selection Sort
0 1 2 3 4 5

start
2

Swap the elements at start and minIdx

0 3 4 10 11 8

What next?

minIdx
2
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Selection Sort
0 1 2 3 4 5

start
3

Decrease the interval.

0 3 4 10 11 8

What next? 60



Selection Sort
0 1 2 3 4 5

start
3

Find minimum element idx between start to end

0 3 4 10 11 8

What next?

minIdx
5
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Selection Sort
0 1 2 3 4 5

Swap the elements at start and minIdx

0 3 4 8 11 10

What next?

start
3

minIdx
5
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Selection Sort
0 1 2 3 4 5

start
4

Decrease the interval.

0 3 4 8 11 10

What next? 63



Selection Sort
0 1 2 3 4 5

start
4

Find minimum element idx between start to end

0 3 4 8 11 10

What next?

minIdx
5
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Selection Sort
0 1 2 3 4 5

Swap the elements at start and minIdx

0 3 4 8 10 11

What next?

start
4

minIdx
5
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Selection Sort
0 1 2 3 4 5

start
5

Decrease the interval.

0 3 4 8 10 11

We’re done! 66



Selection sort

findMinimum(startIdx, L):

 minIdx = startIdx

for i in range(startIdx, len(L)):

 if L[i] < L[minIdx]:

  minIdx = i

return minIdx
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Swap

swap(i, j, L):

 temp = L[i] # step 1

 L[i] = L[j]    # step 2

 L[j] = temp # step 3

Temp i j

Temp i j

Temp i j

Temp i j
68



Selection sort and Bubble sort are O(N2)

L sizes from 100 to 2000
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