
CS 113 – Computer
Science I

Lecture 20 – Binary
Search & Sorting

Thursday 11/21/2024

11/21/2024 CS 113 – Fall ‘24 - Lecture 20 1

Announcements

HW 10 – Due Monday 11/25

 Object Oriented Programming:

 Inheritance & Interface

Mid-semester feedback form: https://forms.gle/Ed7G9oe74QQBT5sy5

Midterm 2: Thursday December 5th

Final: Wednesday 12/18 9:30am-12:30pm Park 238

11/21/2024 CS 113 – Fall ‘24 - Lecture 20 2

https://forms.gle/Ed7G9oe74QQBT5sy5

Linear Search

These previous approaches are examples of linear search

Check each item in a collection one by one

Why is this call linear search?

 Time it takes to search increases linearly with the size of the list

11/21/2024 CS 113 – Fall ‘24 - Lecture 20 3

Binary Search

If we could change the list, is there a way to search more efficiently?

Yes, if the list is sorted

11/21/2024 CS 113 – Fall ‘24 - Lecture 20 4

Binary Search

Assuming list is sorted in ascending order

High-level Algorithm:

• Step 1: Find the midpoint of the list:
• if the search value is at the midpoint – we are done!

• if the value we are searching for is above the midpoint,
• Search right: cut our list in half and repeat step 1 with the right half of the list

• If the value we are searching for is below the midpoint
• Search left: cut out list in half and repeat step 1 with the left half of the list

11/21/2024 CS 113 – Fall ‘24 - Lecture 20 5

Binary Search – Initial Values

lowIndex, highIndex, midIndex

If value at midIndex== searchValue:

 Success!

If value at midIndex < searchValue:

 lowIndex = midIndex + 1

 update midIndex

If value at midIndex > searchValue:

 highIndex = midIndex – 1

 update midIndex

11/21/2024 CS 113 – Fall ‘24 - Lecture 20 6

Binary search w/ Strings

String[] ls = {"bear", "bird", "bug", "cat", "cow", "dog", "fish, "lion“};

Search for “cow”

low mid high ls[mid]

11/21/2024 CS 113 – Fall ‘24 - Lecture 20 7

Binary search w/ Strings

String[] ls = {"bear", "bird", "bug", "cat", "cow", "dog", "fish, "lion“};

Search for “cow”

low mid high ls[mid]

0 3 7 “cat”

11/21/2024 CS 113 – Fall ‘24 - Lecture 20 8

Binary search w/ Strings

String[] ls = {"bear", "bird", "bug", "cat", "cow", "dog", "fish, "lion“};

Search for “cow”

low mid high ls[mid]

0 3 7 “cat”

4 5 7 “dog”

11/21/2024 CS 113 – Fall ‘24 - Lecture 20 9

Binary search w/ Strings

String[] ls = {"bear", "bird", "bug", "cat", "cow", "dog", "fish, "lion“};

Search for “cow”

low mid high ls[mid]

0 3 7 “cat”

4 5 7 “dog”

4 4 4 “cow”!

11/21/2024 CS 113 – Fall ‘24 - Lecture 20 10

Binary search
String[] ls = {"bear", "bird", "bug", "cat", "cow", "dog", "fish, "lion“};

Search for “elephant”

low mid high ls[mid]

11/21/2024 CS 113 – Fall ‘24 - Lecture 20 11

Binary search
String[] ls = {"bear", "bird", "bug", "cat", "cow", "dog", "fish, "lion“};

Search for “elephant”

low mid high ls[mid]

0 3 7 “cat”

11/21/2024 CS 113 – Fall ‘24 - Lecture 20 12

Binary search
String[] ls = {"bear", "bird", "bug", "cat", "cow", "dog", "fish, "lion“};

Search for “elephant”

low mid high ls[mid]

0 3 7 “cat”

4 5 7 “dog”

11/21/2024 CS 113 – Fall ‘24 - Lecture 20 13

Binary search
String[] ls = {"bear", "bird", "bug", "cat", "cow", "dog", "fish, "lion“};

Search for “elephant”

low mid high ls[mid]

0 3 7 “cat”

4 5 7 “dog”

6 6 7 “fish”

11/21/2024 CS 113 – Fall ‘24 - Lecture 20 14

Binary search
String[] ls = {"bear", "bird", "bug", "cat", "cow", "dog", "fish, "lion“};

Search for “elephant”

low mid high ls[mid]

0 3 7 “cat”

4 5 7 “dog”

6 6 7 “fish”

6 5

11/21/2024 CS 113 – Fall ‘24 - Lecture 20 15

Binary Search

If the list is sorted in ascending order, we don’t need to consider every
element.

Which element should we check?

 The middle

If the middle element isnt what we are looking for, what should we do?

 Chop the search space in half (this is why its called binary search)

11/21/2024 CS 113 – Fall ‘24 - Lecture 20 16

Binary Search run time

As the size of our collection increases, the number of guesses/comparisons
increases, but not linearly

The time increases by log 𝑛 we use base 2 . Why?

 Because we cut our search space in half each time

If our collection contains 8 data points, how many comparisons in worst case do we
make:
 log2 8 = 3
If our collection contains 512 data points, how many comparisons in worst case do
we make:

 log2 512 = 9

11/21/2024 CS 113 – Fall ‘24 - Lecture 20 17

Outline

• Binary Search

• Sorting
• Bubble Sort

• Selection Sort

11/21/2024 CS 113 – Fall ‘24 - Lecture 20 18

Who do we care about sorting?

Makes searching faster!

Efficient sorting is important for optimizing

the efficiency of other algorithms (such

as search and merge algorithms) that require input data

to be in sorted lists. Sorting is also often useful

for canonicalizing data and for producing human-

readable output.

11/21/2024 CS 113 – Fall ‘24 - Lecture 20 19

https://en.wikipedia.org/wiki/Sorting
https://en.wikipedia.org/wiki/Algorithmic_efficiency
https://en.wikipedia.org/wiki/Search_algorithm
https://en.wikipedia.org/wiki/Merge_algorithm
https://en.wikipedia.org/wiki/Canonicalization

ChatGPT’s
response:

Covered in data
structures, next

semester!

11/21/2024 CS 113 – Fall ‘24 - Lecture 20 20

Sorting

10 4 3 0 11 8

0 1 2 3 4 5

How might we sort the list of numbers below.
Can we come up with an algorithm?

21

Bubble Sort

Compare two adjacent items, and swap if needed

Repeat until largest item is at the back

Repeat process until done

22

Bubble Sort

10 4 3 0 11 8

0 1 2 3 4 5

What do we do first?

23

Bubble Sort
0 1 2 3 4 5

j - 1
0

Compare j-1 and j; Swap if L[j-1] > L[j]

len = 6

What next?

j
0

10 4 3 0 11 8

24

Bubble Sort
0 1 2 3 4 5

j - 1
0

Compare j-1 and j; Swap if L[j-1] > L[j]

len = 6

What next?

j
1

4 10 3 0 11 8

25

Bubble Sort
0 1 2 3 4 5

j - 1
1

Compare j-1 and j; Swap if L[j-1] > L[j]

len = 6

What next?

j
2

4 10 3 0 11 8

26

Bubble Sort
0 1 2 3 4 5

j - 1
1

Compare j-1 and j; Swap if L[j-1] > L[j]

len = 6

What next?

j
2

4 3 10 0 11 8

27

Bubble Sort
0 1 2 3 4 5

j - 1
2

Compare j-1 and j; Swap if L[j-1] > L[j]

len = 6

What next?

j
3

4 3 10 0 11 8

28

Bubble Sort
0 1 2 3 4 5

j - 1
2

Compare j-1 and j; Swap if L[j-1] > L[j]

len = 6

What next?

j
3

4 3 0 10 11 8

29

Bubble Sort
0 1 2 3 4 5

j - 1
3

Compare j-1 and j; Swap if L[j-1] > L[j]

len = 6

What next?

j
4

4 3 0 10 11 8

30

Bubble Sort
0 1 2 3 4 5

j - 1
4

Compare j-1 and j; Swap if L[j-1] > L[j]

len = 6

What next?

j
5

4 3 0 10 11 8

31

Bubble Sort
0 1 2 3 4 5

j - 1
4

Compare j-1 and j; Swap if L[j-1] > L[j]

len = 6

What next?

j
5

4 3 0 10 8 11

32

Bubble Sort
0 1 2 3 4 5

j - 1
0

Reset and compare pairs with shorter list!

len = 5

What next?

j
1

4 3 0 10 8 11

Last element has
largest element!

33

Bubble Sort
0 1 2 3 4 5

j - 1
0

Compare j-1 and j; Swap if L[j-1] > L[j]

len = 5

What next?

j
1

3 4 0 10 8 11

Last element has
largest element!

34

Bubble Sort
0 1 2 3 4 5

j - 1
1

Compare j-1 and j; Swap if L[j-1] > L[j]

len = 5

What next?

j
2

3 4 0 10 8 11

35

Bubble Sort
0 1 2 3 4 5

j - 1
1

Compare j-1 and j; Swap if L[j-1] > L[j]

len = 5

What next?

j
2

3 0 4 10 8 11

36

Bubble Sort
0 1 2 3 4 5

j - 1
2

Compare j-1 and j; Swap if L[j-1] > L[j]

len = 5

What next?

j
3

3 0 4 10 8 11

37

Bubble Sort
0 1 2 3 4 5

j - 1
3

Compare j-1 and j; Swap if L[j-1] > L[j]

len = 5

What next?

j
4

3 0 4 10 8 11

38

Bubble Sort
0 1 2 3 4 5

j - 1
3

Compare j-1 and j; Swap if L[j-1] > L[j]

len = 5

What next?

j
4

3 0 4 8 10 11

39

Bubble Sort
0 1 2 3 4 5

j - 1
0

Reset and check pairs with shorter list

len = 4

What next?

j
1

3 0 4 8 10 11

40

Bubble Sort
0 1 2 3 4 5

j - 1
0

Compare j-1 and j; Swap if L[j-1] > L[j]

len = 4

What next?

j
1

0 3 4 8 10 11

41

Bubble Sort
0 1 2 3 4 5

j - 1
1

Compare j-1 and j; Swap if L[j-1] > L[j]

len = 4

What next?

j
2

0 3 4 8 10 11

42

Bubble Sort
0 1 2 3 4 5

j - 1
2

Compare j-1 and j; Swap if L[j-1] > L[j]

len = 4

What next?

j
3

0 3 4 8 10 11

43

Bubble Sort
0 1 2 3 4 5

j - 1
0

Reset; Compare j-1 and j; Swap if L[j-1] > L[j]

len = 3

What next?

j
1

0 3 4 8 10 11

44

Bubble Sort
0 1 2 3 4 5

j - 1
0

Reset; Compare j-1 and j; Swap if L[j-1] > L[j]

len = 3

What next?

j
1

0 3 4 8 10 11

45

Bubble Sort
0 1 2 3 4 5

j - 1
0

Reset; Compare j-1 and j; Swap if L[j-1] > L[j]

len = 2

What next?

j
1

0 3 4 8 10 11

46

Bubble Sort

Idea: bubble highest values to the end of the list; Check a shorter sublist
each time

bubbleSort(L):

 for len in [L.length, 1):

 for j in [1, len): # bubble

 if L[j-1] > L[j]:

 swap(j-1, j, L)

47

Bubble sort

swap(i, j, L):

 temp = L[i] # step 1

 L[i] = L[j] # step 2

 L[j] = temp # step 3

Temp i j

Temp i j

Temp i j

Temp i j
48

Selection Sort

11/21/2024 CS 113 – Fall ‘24 - Lecture 20 49

Selection sort

Repeatedly find the smallest item and put it at front of list

selectionSort(L):

for startIdx in range(len(L)):

 minIdx = findMinimum(startIdx, L)

 swap(startIdx, minIdx, L)

50

Selection Sort

10 4 3 0 11 8

0 1 2 3 4 5

What do we do first?

51

Selection Sort
0 1 2 3 4 5

start
0

Find minimum element idx between start to end

10 4 3 0 11 8

What next?

minIdx
3

52

Selection Sort
0 1 2 3 4 5

start
0

Swap the elements at start and minIdx

0 4 3 10 11 8

What next?

minIdx
3

53

Selection Sort
0 1 2 3 4 5

start
1

Decrease the interval.

0 4 3 10 11 8

What next? 54

Selection Sort
0 1 2 3 4 5

start
1

Find minimum element between start to end

0 4 3 10 11 8

What next?

minIdx
2

55

Selection Sort
0 1 2 3 4 5

start
1

Swap the elements at start and minIdx

0 3 4 10 11 8

What next?

minIdx
2

56

Selection Sort
0 1 2 3 4 5

start
2

Decrease the interval.

0 3 4 10 11 8

What next? 57

Selection Sort
0 1 2 3 4 5

start
2

Find minimum element idx between start to end

0 3 4 10 11 8

What next?

minIdx
2

58

Selection Sort
0 1 2 3 4 5

start
2

Swap the elements at start and minIdx

0 3 4 10 11 8

What next?

minIdx
2

59

Selection Sort
0 1 2 3 4 5

start
3

Decrease the interval.

0 3 4 10 11 8

What next? 60

Selection Sort
0 1 2 3 4 5

start
3

Find minimum element idx between start to end

0 3 4 10 11 8

What next?

minIdx
5

61

Selection Sort
0 1 2 3 4 5

Swap the elements at start and minIdx

0 3 4 8 11 10

What next?

start
3

minIdx
5

62

Selection Sort
0 1 2 3 4 5

start
4

Decrease the interval.

0 3 4 8 11 10

What next? 63

Selection Sort
0 1 2 3 4 5

start
4

Find minimum element idx between start to end

0 3 4 8 11 10

What next?

minIdx
5

64

Selection Sort
0 1 2 3 4 5

Swap the elements at start and minIdx

0 3 4 8 10 11

What next?

start
4

minIdx
5

65

Selection Sort
0 1 2 3 4 5

start
5

Decrease the interval.

0 3 4 8 10 11

We’re done! 66

Selection sort

findMinimum(startIdx, L):

 minIdx = startIdx

for i in range(startIdx, len(L)):

 if L[i] < L[minIdx]:

 minIdx = i

return minIdx

67

Swap

swap(i, j, L):

 temp = L[i] # step 1

 L[i] = L[j] # step 2

 L[j] = temp # step 3

Temp i j

Temp i j

Temp i j

Temp i j
68

Selection sort and Bubble sort are O(N2)

L sizes from 100 to 2000

Ti
m

e
in

 m
ill

is
ec

on
d

s

69

	Slide 1: CS 113 – Computer Science I Lecture 20 – Binary Search & Sorting
	Slide 2: Announcements
	Slide 3: Linear Search
	Slide 4: Binary Search
	Slide 5: Binary Search
	Slide 6: Binary Search – Initial Values
	Slide 7: Binary search w/ Strings
	Slide 8: Binary search w/ Strings
	Slide 9: Binary search w/ Strings
	Slide 10: Binary search w/ Strings
	Slide 11: Binary search
	Slide 12: Binary search
	Slide 13: Binary search
	Slide 14: Binary search
	Slide 15: Binary search
	Slide 16: Binary Search
	Slide 17: Binary Search run time
	Slide 18: Outline
	Slide 19: Who do we care about sorting?
	Slide 20: ChatGPT’s response:
	Slide 21: Sorting
	Slide 22: Bubble Sort
	Slide 23: Bubble Sort
	Slide 24: Bubble Sort
	Slide 25: Bubble Sort
	Slide 26: Bubble Sort
	Slide 27: Bubble Sort
	Slide 28: Bubble Sort
	Slide 29: Bubble Sort
	Slide 30: Bubble Sort
	Slide 31: Bubble Sort
	Slide 32: Bubble Sort
	Slide 33: Bubble Sort
	Slide 34: Bubble Sort
	Slide 35: Bubble Sort
	Slide 36: Bubble Sort
	Slide 37: Bubble Sort
	Slide 38: Bubble Sort
	Slide 39: Bubble Sort
	Slide 40: Bubble Sort
	Slide 41: Bubble Sort
	Slide 42: Bubble Sort
	Slide 43: Bubble Sort
	Slide 44: Bubble Sort
	Slide 45: Bubble Sort
	Slide 46: Bubble Sort
	Slide 47: Bubble Sort
	Slide 48: Bubble sort
	Slide 49: Selection Sort
	Slide 50: Selection sort
	Slide 51: Selection Sort
	Slide 52: Selection Sort
	Slide 53: Selection Sort
	Slide 54: Selection Sort
	Slide 55: Selection Sort
	Slide 56: Selection Sort
	Slide 57: Selection Sort
	Slide 58: Selection Sort
	Slide 59: Selection Sort
	Slide 60: Selection Sort
	Slide 61: Selection Sort
	Slide 62: Selection Sort
	Slide 63: Selection Sort
	Slide 64: Selection Sort
	Slide 65: Selection Sort
	Slide 66: Selection Sort
	Slide 67: Selection sort
	Slide 68: Swap
	Slide 69: Selection sort and Bubble sort are O(N2)

