CS 113 — Computer
Science |

_ecture 16 — Class
Design & Relationships

Tuesday 11/07/2024

CS 113 —Fall 24 - Lecture 16

Announcements

HW 07 — Due Monday 11/11
Board game

longer one
Lab06 and Lab07 are relevant

Midterm 2: Moving it to Thursday December 5t

Agenda

* Objects & Classes
* Arrays of Objects

CS 113 —Fall 24 - Lecture 16

Class

A blueprint for a custom data type
A template for how data/information is stored

Contains a set of methods for how to interact/operate on the
stored data

Classes and objects

A class defines the characteristics of a type (data and methods)

An object is a particular example of a class

String word = “hello”;
=

Java is a strict object-oriented programming language, meaning all code
must be inside a class!

11/7/2024 CS 113 —Fall ‘24 - Lecture 16 5

Using objects: some special methods

The constructor method is called when you do a new’

accesors (aka getters)
return the values of instance variables

mutators (aka setters)
set the values of instance variables

toString()
returns a string representation of an object

Defining classes

By defining our own classes, we can create our own data types
A class definition contains
- the data contained by the new type (instance variables)

- the operations supported by the new type (instance methods)

Object-oriented programming (OOP)

Method for designing programs in terms of objects

Recall: Top-down design

* the “nouns” in your feature list correspond to classes/data

* the “verbs” correspond to methods

Bank Actions

How can we find out how much money the bank is holding at once?
How can we find out which account is currently overdraft?

What other questions might the bank want to know?

Exercise: Bank Account

BankAccount should have the following data:
* Name
* Amount

BankAccount should have the following operations:
 currentBalance() // returns current amount in the bank account

» withdraw(float amt) // withdraw the given amount from the account
» deposit(float amt) // deposit the given amount to the account

this

‘this is a special keyword that refers to the object inside an instance
method

Allows us to access other instance variables within an instance method

Revisiting the Bank class

public class Bank {
int size;
String name;
String[] clients;
double[] accounts;

public Bank(String bankName, int numClients) {
nhame = bankName;
size = numClients;
clients = new String[size];
accounts = new double[size];

}
public String getName() {

return name;

}
}

11/7/2024 CS 113 —Fall 24 - Lecture 16

12

Revisiting the Bank class

public class Bank {
int size;
String name;
BankAccount[] accounts;

public Bank(String bankName, int numClients) {
hame = bankName;
size = numClients;
accounts = new BankAccount[size];

}
public String getName() {

return name;

}

11/7/2024 CS 113 —Fall 24 - Lecture 16

13

Access modifiers

Specify the access-level of instance variables/methods

* public

» code outside of the class can access the variable/method

* private
* code outside of the class cannot access the variable/method

Default in java is public

Access modifiers

Default in java is public

In this class, make instance data private

Revisiting the Bank class

public class Bank {
private int size;
private String name;
private BankAccount[] accounts;

public Bank(String bankName, int numClients) {
hame = bankName;
size = numClients;
accounts = new BankAccount[size];

}
public String getName() {

return name;

}

11/7/2024 CS 113 —Fall 24 - Lecture 16

16

OOP Example & Design: Vending machine

OOP Example: Snack

Name
Cost

Quantity

Defining the snack class

public class Snack {
private int mQuantity;
private double mCost;
private String mName;

public Snack(String name, int quantity, double cost) {
mQuantity = quantity;
mCost = cost;
mName = name;
}
public String getName() {
return mName;

}

public void buy() {
if (mQuantity > 0) {
mQuantity--;
}
}

}1/7/2024 CS 113 —Fall 24 - Lecture 16

19

Testing the Snack class

public static void main(String args[])

{

Snack snack = new Snack("Slurm", 10, 1.5);
System.out.println("Snack: "+snack.getName());

11/7/2024 CS 113 —Fall 24 - Lecture 16

20

Vending Machine Class

Vending machines have a list of snacks

Designing Classes

What properties does a bird have and what can it do?
e Size, color, feathers, fly

What properties does a lion have and what can it do?
* Size, color, hair, runs

What properties does a kangaroo have and what can it do?
e Size, color, arms, jumps

Animal

nheritance: feature for organizing classes into
nierarchies

B

Reptile

Snake

11/7/2024

N\

Tree Lizard

Bird

Fish

\

Flamingo

Crow

Penguin

Shark

CS 113 —Fall 24 - Lecture 16

Hammerhead

23

Class inheritance

Classes can be arranged hierarchically where,
a child class “inherits” from a parent class

Animal

nheritance: feature for organizing classes into
nierarchies

B

Reptile

Snake

11/7/2024

N\

Tree Lizard

Bird

Fish

\

Flamingo

Crow

Penguin

Shark

CS 113 —Fall 24 - Lecture 16

Hammerhead

25

Inheritance: subclasses refine behavior/state

Subclasses can override methods from parent class

Exercise

1. Implement getter functions for instance variables inside Animal

2. In Zoo.java, call the getters and output the values to console

Polymorphism
Program can treat all objects that extend a base class the same

Java automatically calls the specific methods for each subclass

Polymorphism: Demo

public class Zoo {
public static void main(String[] args) {
Animal animall = new Animal();
animall.locomote();

Animal animal2 = new Reptile();
animal2.locomote();

}
}

public class Animal {
public Animal() {
}
public void locomote() {
System.out.printin("l am moving!");

}
}

11/7/2024

public class Reptile extends Animal {
public Reptile() {
}
public void locomote() {
System.out.printin("l am walking!");

}
}

CS 113 — Fall ‘24 - Lecture 16

Exercise: What is the output of this program?

public class Zoo {
public static void main(String[] args) {
Animal animall = new Animal();
animall.locomote();

Animal animal2 = new Fish();
animal2.locomote();

}
}

public class Animal {
public Animal() {
}
public void locomote() {
System.out.printIn("l am moving!");

}
}

public class Fish extends Animal {

public Fish() {

}

public void locomote() {
System.out.printin("l am swimming!");

}
}

Question: How would we implement Minion?

/\

Entity

Player

11/7/2024

NPC

Shop Keeper

Quest Giver

Orc

CS 113 —Fall 24 - Lecture 16

AN

Minion

King

31

Inheritance

Entity
NPC
Shop Keeper Quest Giver Orc
Minion King

11/7/2024 CS 113 —Fall 24 - Lecture 16

Inheritance: subclasses refine behavior/state

Subclasses can override methods from parent class

class Animal {

public Animal(String name, boolean hasHair,
int numberLegs, boolean swimable) {

11/7/2024

this
this
this
this

.hasHair = hasHair;
.numberLegs = numberlLegs;
.name = name;

.Swimable = swimable;

public class

Fish extends Animal {

public Fish(String name, boolean hasHair,

this.
this.
.numberLegs = numlLegs;
this.

this

CS 113 —Fall 24 - Lecture 16

int numLegs, boolean swimable) {
name = name;
hasHair = hasHair;

swimable = swimable;

33

Inheritance: constructors - super|();

super();
reference variable that is used to refer parent class constructor

11/7/2024 CS 113 —Fall 24 - Lecture 16

34

Inheritance: subclasses refine behavior/state

Subclasses can override methods from parent class

class Animal {

public Animal(String name, boolean hasHair,
int numberLegs, boolean swimable) {

11/7/2024

this
this
this
this

.hasHair = hasHair;
.numberLegs = numberlLegs;
.name = name;

.Swimable = swimable;

public class

Fish extends Animal {

public Fish(String name, boolean hasHair,

this.
this.
.numberLegs = numlLegs;
this.

this

CS 113 —Fall 24 - Lecture 16

int numLegs, boolean swimable) {
name = name;
hasHair = hasHair;

swimable = swimable;

35

Inheritance: constructors - super|();

class Animal { . . .
public class Fish extends Animal {

public Animal(String name, boolean hasHair, public Fish(String name, boolean hasHair,
int numberLegs, boolean swimable) { int numLegs, boolean swimable) {
. . . this.name = name;
this.hasHair = hasHair; t . .
. this.hasHair = hasHair;
this.numberLegs = numberlLegs; this.numberLegs = numLegs;
this.name = name; this.swimable = swimable;
this.swimable = swimable; b

public class Fish extends Animal {

public Fish(String name, boolean hasHair,
int numLegs, boolean swimable) {
super();

}

11/7/2024 CS 113 —Fall ‘24 - Lecture 16 36

Inheritance: constructors - super|();

super();
reference variable that is used to refer parent class constructors

Note:
super:
reference variable that is used to refer parent class object

11/7/2024 CS 113 —Fall 24 - Lecture 16

37

Animal

nheritance: feature for organizing classes into
nierarchies

B

Reptile

Snake

11/7/2024

N\

Tree Lizard

Bird

Fish

\

Flamingo

Crow

Penguin

Shark

CS 113 —Fall 24 - Lecture 16

Hammerhead

38

	Slide 1: CS 113 – Computer Science I Lecture 16 – Class Design & Relationships
	Slide 2: Announcements
	Slide 3: Agenda
	Slide 4: Class
	Slide 5: Classes and objects
	Slide 6: Using objects: some special methods
	Slide 7: Defining classes
	Slide 8: Object-oriented programming (OOP)
	Slide 9: Bank Actions
	Slide 10: Exercise: Bank Account
	Slide 11: this
	Slide 12: Revisiting the Bank class
	Slide 13: Revisiting the Bank class
	Slide 14: Access modifiers
	Slide 15: Access modifiers
	Slide 16: Revisiting the Bank class
	Slide 17: OOP Example & Design: Vending machine
	Slide 18: OOP Example: Snack
	Slide 19: Defining the snack class
	Slide 20: Testing the Snack class
	Slide 21: Vending Machine Class
	Slide 22: Designing Classes
	Slide 23: Inheritance: feature for organizing classes into hierarchies
	Slide 24: Class inheritance
	Slide 25: Inheritance: feature for organizing classes into hierarchies
	Slide 26: Inheritance: subclasses refine behavior/state
	Slide 27: Exercise
	Slide 28: Polymorphism
	Slide 29: Polymorphism: Demo
	Slide 30: Exercise: What is the output of this program?
	Slide 31: Question: How would we implement Minion?
	Slide 32: Inheritance
	Slide 33: Inheritance: subclasses refine behavior/state
	Slide 34: Inheritance: constructors - super();
	Slide 35: Inheritance: subclasses refine behavior/state
	Slide 36: Inheritance: constructors - super();
	Slide 37: Inheritance: constructors - super();
	Slide 38: Inheritance: feature for organizing classes into hierarchies

