/7.@;-:”‘4 5"4” g ' : CS 113 = COmpUter
//;':;%x "Z Y) Science |

Lecture 14 — Arrays of
Arrays

Tuesday 03/19/2024

CS 131 — Spring '24 - Lecture 14

Announcements

HW 06 Loops due Sunday night
- Late due date is tonight

Midterm grades coming

Outline

A

Nested loops
Arrays of Arrays
Expanding Arrays
Mutability

O O B W N

Code Example
for (int 1 = 0; 1 <= 3; 1++)
System.out.print (1 + ",

J
System.out.println();

{

for (int j = 0; 7 <= 3; J++) {

1A _I_ j _I_ 1A

")

i [ie3]ie3

Code Example

for (int 1 = 0; 1 <= 3 ; 1i++) {
for (int j = 0; 3 <= 3; J++) |
System.out.print(i + ", " + 3 + " "),
}
System.out.println () ;

| |i<=3]j<=3
Code Example —

for (int 1 = 0; 1 <= 3 ; 1i++) {
for (int j = 0; 3 <= 3; J++) |
System.out.print(i + ", " + 3 + " "),
}
System.out.println () ;

N B P B B B, O O O O O
© W N B O H W N B
-1 4 4 4 4 +H4 +d4 -4 - -
-4 mn 4 4 4 4 m +d4 +H4 4 -

What does this code print?

for (int 1 = 0; 1 < size; 1++) {
for (int 7 = 0; 7 <= 1i; J++) |
System.out.print ("* ");

J
System.out.println();

Exercise: Spelling

Write a method called canSpell that takes two strings (letters and word)
and checks whether the set of letters can spell the word.

Exercise: Nested loops

S java Rectangle
Enter a width: 2
Enter a height: 4

* %k
* %
* %

* %k

S java Rectangle
Enter a width: 2
Enter a height: 2

* %

* %

S java Rectangle
Enter a width: 7
Enter a height: 2

%k %k %k %k %k %k %

%k %k %k %k %k %k %

02/29/24

CS 131 —Spring '24 - Lecture 12

Arrays of Arrays

Arrays
Three ways to initialize an array

1. With an initial value
int[] numbers = {1, 2, 5};

2. With allocated space, but uninitialized
int[] numbers = new int[3];

3. With an empty array reference
int[] numbers = null;

Array Indexing

Access individual elements of an array with indexing
array[index]

We use zero-based indexing
first elementis 0

last element is length-1

Accessing indices out of range results in a runtime error!

Iterating through an array

Write a method called printArray that takes in an array of integers and
prints out the values in the array:

printArray({1,2,3,4}) -> “1 2 3 4”

Array Comparison

we can’t use “=="to compare arrays

Strings and arrays are NOT primitives

They are objects

Arrays of Arrays

int[] arrayl is an array of ints
String[] array2 is an array of Strings

What is int[][] array3?
An array of integer arrays

What is String[][] array4?
An array of String arrays

2D array example

What does int[][] array = new int[4][3] look like?

2D array example

What does int[][] array = new int[4][3] look like?

array
0 1 2
row 0 //
row 1 0 1 2
row 2
row 3 \ 0 1 2
0 1 2

Figure 15.3: Storing rows and columns with a 2D array.

02/29/24 CS 131 —Spring '24 - Lecture 12

Declaring and Initializing Arrays

int[][] matrix1 = {
{1, 2, 3},
{4, 5, 6},
{7, 8, 9}

b

int[][] matrix2 = new int[3][4]; //can fill with a loop

2D Array

Useful for representing a:
*Grid

* Boardgame

* Matrix

* Table

Looping Over a 2D array

code

Array Example

Given a 2-D array, compute the average of all elements

11 12 13 1 6
16 17 18 9 8

Array Example

write a method fill which takes two ints (row and col) and an int[][] and
fills that position with the number 100

Array Example

Given a square 2-D array, compute the sum of the diagonal

1
6
11
16
21

2
7
12
17
22

3
8
13
18
23

4
9
14
19
24

5
10
15
20
25

Array Example

Given a 2-D array, compute the sum of the perimeter

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20

O = W N

0 O O N

Expanding Arrays

Bank example

Keep track of account balances

Use an array:
Each index represents another account

The value represents the account’s balance

Determine how many accounts we can hold:
Create a new array of fixed size

Bank example

Over time our bank becomes successful, lots of new clients
No more space for new customers
Implementation issue: running out of space in our array

Solution: build a bigger bank!

Building a bigger bank

03/19/24 CS 131 —Spring '24 - Lecture 14

28

Copying arrays

03/19/24

Old bank

3.0

6.0

7.0

-2.5

CS 131 — Spring '24 - Lecture 14

29

Copying arrays — build the new bank/array

Old bank

30 | 60 | 70 | -25

new bank

Copying arrays — copy over values/customers

Old bank

30 | 60 | 70 | -25

new bank

Copying arrays — copy over values/customers

03/19/24

Old bank

3.0

6.0

7.0

-2.5

U

new bank

CS 131 — Spring '24 - Lecture 14

32

Copying arrays — copy over values/customers

03/19/24

Old bank
3.0 6.0 7.0 | -2.5
3.0

new bank

CS 131 — Spring '24 - Lecture 14

33

Copying arrays — copy over values/customers

Old bank
3.0 6.0
3.0

new bank

7.0 | -2.5

03/19/24 CS 131 —Spring '24 - Lecture 14

Copying arrays — copy over values/customers

Old bank
3.0 6.0
3.0 6.0

new bank

7.0 | -2.5

03/19/24 CS 131 —Spring '24 - Lecture 14

Copying arrays — copy over values/customers

Old bank
3.0 6.0 7.0
3.0 6.0

new bank

-2.5

03/19/24 CS 131 —Spring '24 - Lecture 14

Copying arrays — copy over values/customers

Old bank
3.0 6.0 7.0
3.0 6.0 7.0

new bank

-2.5

03/19/24 CS 131 —Spring '24 - Lecture 14

Copying arrays — copy over values/customers

Old bank
3.0 6.0 7.0 | -2.5
3.0 6.0 7.0

new bank

03/19/24 CS 131 —Spring '24 - Lecture 14 38

Copying arrays — copy over values/customers

Old bank
3.0 6.0 7.0
3.0 6.0 7.0

new bank

2.5
2.5

03/19/24 CS 131 —Spring '24 - Lecture 14

Algorithm

When we run out of space in an array
* Create a new array (that’s a bit bigger)
* Copy over all elements from the older array to the new array

Let’s implement this..

How many steps do we take in this algorithm?
*Creating a new array — 1 step

* Copying n elements from the old array to the new array — n steps

How big should the new array be?

Previous size plus 1
* Pro: not making too much space
* Con: might have to create new arrays a lot of times

As big as possible
* Pro: rarely have to create a new array
e Con: wasted space

Typical solution — previous size x 2

Mutability

Mutable vs Immutable

Mutable:
Values can change
methods can change the state of the object directly

Immutable:
Values cannot change

Instead, any operations that would alter the object’s state return a
new object with the modified state

Strings and Integers are immutable

Mutable vs Immutable

claim: Strings and Integers are immutable
code!

The underlying value can change, but this will create a new object

Mutability

Why does java enforce this?

- Safety
- Compile time checks force you to reason about what can be changed, what
objects are being created, etc.

- Predictability
- Any enforcements on how code will behave is a great thing for finding bugs
automatically!

- Resource Management
- Compiler can make optimizations on space needed for each object etc.

