
CS 113 – Computer
Science I

Lecture 10 – Recursion,
Arrays and Loops

Thursday 02/22/2024

02/22/2024 CS 131 – Spring '24 - lecture 10 1

Announcements

• HW03 due tonight
• Isopsephy

• https://www.cs.cmu.edu/~pattis/15-1XX/common/handouts/ascii.html
• index from 1

02/22/2024 CS 131 – Spring '24 - lecture 10 2

Agenda

Recursion - review

Arrays – reviews

Loops

02/22/2024 CS 131 – Spring '24 - lecture 10 3

Recursion Example – printVowels

Write a recursive function that prints just the vowels in a String

02/22/2024 CS 131 – Spring '24 - lecture 10 4

Arrays

02/22/2024 CS 131 – Spring '24 - lecture 10 5

Arrays

Three ways to initialize an array

1. With an initial value
int[] numbers = {1, 2, 5};

2. With allocated space, but uninitialized
int[] numbers = new int[3];

3. With an empty array reference

 int[] numbers = null;

02/20/24 CS 131 – Spring '24 - Lecture 08 6

Array Indexing

Access individual elements of an array with indexing

array[index]

We use zero-based indexing

first element is 0

last element is length-1

Accessing indices out of range results in a runtime error!

02/20/24 CS 131 – Spring '24 - Lecture 08 7

Arrays - default values

int[] numbers = new int[3];

8

0

numbers

0 0

String[] words = new String[3];

null

words

null null

Arrays - default values

Scanner[] words = new Scanner[3];

9

?

Scanner

? ?

null

Scanner

null null

Arrays

int[] x = {2, 7, 5};

System.out.println(x.length); //what will this print?

.length field tells us how many elements are in the array

Once an array is full, you cannot add more elements to it!

10

Arrays

Implement a method calculateSum that takes an int array as a parameter
and returns the sum of its elements

assume the array has 5 elements

11

Printing an Array

Let’s test our calculateSum method

12

Array Comparison

Strings and arrays are NOT primitives

They are objects

Explains why we can’t use “==“ to compare Strings

 “==“ checks if two objects are the same

not if the two values are the same

02/22/2024 CS 131 – Spring '24 - lecture 10 13

Recursion Example – Boolean Array Negation

Implement a recursive method called boolNeg that takes a boolean array
as input and returns a new array with each boolean value negated (e.g.,
true becomes false and vice versa).

02/22/2024 CS 131 – Spring '24 - lecture 10 14

Loops

15

Exercise

calculateSum with an unknown number of
elements in arr

10/24/23 CS 131 – Fall ‘23 - Lecture 13 16

Loops

• Easy way to repeat some computation

• Two kinds of loops:
• While
• For

• Loops repeat block of code until the condition becomes false

10/24/23 CS 131 – Fall ‘23 - Lecture 13 17

While loop

While a condition is true, run a block of code

while(condition) {

 //run the code in this block

}

10/24/23 CS 131 – Fall ‘23 - Lecture 13 18

Tracing Loops

 int sum = 1;
 int count = 0;
 while (count < 3) {
 sum = sum + 2;
 count = count + 1;
 }

Count < 3 count sum

10/24/23 CS 131 – Fall ‘23 - Lecture 13 19

Tracing Loops

 int sum = 1;
 int count = 0;
 while (count < 3) {
 sum = sum + 2;
 count = count + 1;
 }

Count < 3 count sum

T 0 1

10/24/23 CS 131 – Fall ‘23 - Lecture 13 20

Tracing Loops

 int sum = 1;
 int count = 0;
 while (count < 3) {
 sum = sum + 2;
 count = count + 1;
 }

Count < 3 count sum

T 0 1

T 1 3

10/24/23 CS 131 – Fall ‘23 - Lecture 13 21

Tracing Loops

 int sum = 1;
 int count = 0;
 while (count < 3) {
 sum = sum + 2;
 count = count + 1;
 }

Count < 3 count sum

T 0 1

T 1 3

T 2 5

10/24/23 CS 131 – Fall ‘23 - Lecture 13 22

Tracing Loops

 int sum = 1;
 int count = 0;
 while (count < 3) {
 sum = sum + 2;
 count = count + 1;
 }

Count < 3 count sum

T 0 1

T 1 3

T 2 5

T 3 7

10/24/23 CS 131 – Fall ‘23 - Lecture 13 23

Tracing Loops

 int sum = 1;
 int count = 0;
 while (count < 3) {
 sum = sum + 2;
 count = count + 1;
 }

Count < 3 count sum

T 0 1

T 1 3

T 2 5

T 3 7

F 3 7

10/24/23 CS 131 – Fall ‘23 - Lecture 13 24

Example

rewrite calculateSum with a loop

25

Example

26

rewrite ArrayEq with a loop

Exercise: Tracing loops

 int sum = 10;
 int count = 0;
 while (count < 6) {
 sum = sum - 1;
 count = count + 2;
 }

Count < 6 count sum

10/24/23 CS 131 – Fall ‘23 - Lecture 13 27

Exercise: Tracing loops

 int sum = 10;
 int count = 0;
 while (count < 6) {
 sum = sum - 1;
 count = count + 2;
 }

Count < 6 count sum

T 0 10

T 2 9

T 4 8

T 6 7

F

10/24/23 CS 131 – Fall ‘23 - Lecture 13 28

Accumulator pattern

Idea: Repeatedly update a variable (typically in a loop)

Pattern:

1. Initialize accumulator variable

2. Loop until done
1. Update the accumulator variable

10/24/23 CS 131 – Fall ‘23 - Lecture 13 29

Convenient Assignment
Syntax

30

Convenience syntax: Assignment

Because updating variable values is so common, language such as Java
provide shorthand syntax for it

• Analogy: contractions in English

AssignSyntax.java

10/24/23 CS 131 – Fall ‘23 - Lecture 13 31

Convenience syntax: Assignment

Because updating variable values is so common, language such as Java
provide shorthand syntax for it

• Analogy: contractions in English

sum = sum + 2

count = count + 1

count = count - 1

product = product * 2

divisor = divisor / 2

message = message + “ lol”
10/24/23 CS 131 – Fall ‘23 - Lecture 13 32

Convenience syntax: Assignment

Because updating variable values is so common, language such as Java
provide shorthand syntax for it

• Analogy: contractions in English

sum = sum + 2 sum += 2

count = count + 1

count = count - 1

product = product * 2

divisor = divisor / 2

message = message + “ lol”
10/24/23 CS 131 – Fall ‘23 - Lecture 13 33

Convenience syntax: Assignment

Because updating variable values is so common, language such as Java
provide shorthand syntax for it

• Analogy: contractions in English

sum = sum + 2 sum += 2

count = count + 1 count += 1

count = count - 1

product = product * 2

divisor = divisor / 2

message = message + “ lol”
10/24/23 CS 131 – Fall ‘23 - Lecture 13 34

Convenience syntax: Assignment

Because updating variable values is so common, language such as Java
provide shorthand syntax for it

• Analogy: contractions in English

sum = sum + 2 sum += 2

count = count + 1 count += 1

count = count - 1 count -= 1

product = product * 2

divisor = divisor / 2

message = message + “ lol”
10/24/23 CS 131 – Fall ‘23 - Lecture 13 35

Convenience syntax: Assignment

Because updating variable values is so common, language such as Java
provide shorthand syntax for it

• Analogy: contractions in English

sum = sum + 2 sum += 2

count = count + 1 count += 1

count = count - 1 count -= 1

product = product * 2 product *= 2

divisor = divisor / 2

message = message + “ lol”
10/24/23 CS 131 – Fall ‘23 - Lecture 13 36

Convenience syntax: Assignment

Because updating variable values is so common, language such as Java
provide shorthand syntax for it

• Analogy: contractions in English

sum = sum + 2 sum += 2

count = count + 1 count += 1

count = count - 1 count -= 1

product = product * 2 product *= 2

divisor = divisor / 2 divisor /= 2

message = message + “ lol”
10/24/23 CS 131 – Fall ‘23 - Lecture 13 37

Convenience syntax: Assignment

Because updating variable values is so common, language such as Java
provide shorthand syntax for it

• Analogy: contractions in English

sum = sum + 2 sum += 2

count = count + 1 count += 1

count = count - 1 count -= 1

product = product * 2 product *= 2

divisor = divisor / 2 divisor /= 2

message = message + “ lol” message += “ lol”
10/24/23 CS 131 – Fall ‘23 - Lecture 13 38

Exercise: Write a program that computes
powers of 2
Write a program, LoopPow2.java, that computes powers of twos. For
example,

$ java LoopPow2
Enter an exponent: 0
2 to the power of 0 is 1

$ java LoopPow
Enter an exponent: 1
2 to the power of 1 is 2

$ java LoopPow
Enter an exponent: 4
2 to the power of 4 is 16

10/24/23 CS 131 – Fall ‘23 - Lecture 13 39

Exercise: Non-recursive blast off

take a number from the user, count down from that number to 0 and
then print “BLAST OFF!”

40

Exercise: Non-recursive Factorial

41

