
CS 113 – Computer 
Science I

Lecture 10 – Recursion, 
Arrays and Loops

Thursday  02/22/2024
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Announcements

• HW03 due tonight
• Isopsephy

• https://www.cs.cmu.edu/~pattis/15-1XX/common/handouts/ascii.html
• index from 1 
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Agenda

Recursion - review

Arrays – reviews

Loops
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Recursion Example – printVowels

Write a recursive function that prints just the vowels in a String
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Arrays
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Arrays

Three ways to initialize an array

1. With an initial value
int[] numbers = {1, 2, 5}; 

2. With allocated space, but uninitialized
int[] numbers = new int[3];

3. With an empty array reference

   int[] numbers = null;
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Array Indexing

Access individual elements of an array with indexing

array[index]

We use zero-based indexing

first element is 0

last element is length-1

Accessing indices out of range results in a runtime error!
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Arrays - default values

int[] numbers = new int[3];
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0

numbers

0 0

String[] words = new String[3];

null

words

null null



Arrays - default values

Scanner[] words = new Scanner[3];
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?

Scanner

? ?

null

Scanner

null null



Arrays

int[] x = {2, 7, 5};

System.out.println(x.length); //what will this print?

.length field tells us how many elements are in the array 

Once an array is full, you cannot add more elements to it! 
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Arrays

Implement a method calculateSum that takes an int array as a parameter 
and returns the sum of its elements

assume the array has 5 elements
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Printing an Array

Let’s test our calculateSum method
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Array Comparison

Strings and arrays are NOT primitives

They are objects

Explains why we can’t use “==“ to compare Strings

 “==“ checks if two objects are the same

not if the two values are the same
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Recursion Example – Boolean Array Negation

Implement a recursive method called boolNeg that takes a boolean array 
as input and returns a new array with each boolean value negated (e.g., 
true becomes false and vice versa).
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Loops
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Exercise 

calculateSum with an unknown number of 
elements in arr 
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Loops

• Easy way to repeat some computation

• Two kinds of loops:
• While
• For

• Loops repeat block of code until the condition becomes false
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While loop

While a condition is true, run a block of code

while(condition) {

  //run the code in this block

}

10/24/23 CS 131 – Fall ‘23 - Lecture 13 18



Tracing Loops

        int sum = 1;
        int count = 0;
        while (count < 3) {
            sum = sum + 2;
            count = count + 1;
        }
        

Count < 3 count sum
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Tracing Loops

        int sum = 1;
        int count = 0;
        while (count < 3) {
            sum = sum + 2;
            count = count + 1;
        }
        

Count < 3 count sum

T 0 1
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Tracing Loops

        int sum = 1;
        int count = 0;
        while (count < 3) {
            sum = sum + 2;
            count = count + 1;
        }
        

Count < 3 count sum

T 0 1

T 1 3

10/24/23 CS 131 – Fall ‘23 - Lecture 13 21



Tracing Loops

        int sum = 1;
        int count = 0;
        while (count < 3) {
            sum = sum + 2;
            count = count + 1;
        }
        

Count < 3 count sum

T 0 1

T 1 3

T 2 5
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Tracing Loops

        int sum = 1;
        int count = 0;
        while (count < 3) {
            sum = sum + 2;
            count = count + 1;
        }
        

Count < 3 count sum

T 0 1

T 1 3

T 2 5

T 3 7
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Tracing Loops

        int sum = 1;
        int count = 0;
        while (count < 3) {
            sum = sum + 2;
            count = count + 1;
        }
        

Count < 3 count sum

T 0 1

T 1 3

T 2 5

T 3 7

F 3 7
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Example

rewrite calculateSum with a loop
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Example
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rewrite ArrayEq with a loop



Exercise: Tracing loops

        int sum = 10;
        int count = 0;
        while (count < 6) {
            sum = sum - 1;
            count = count + 2;
        }

Count < 6 count sum
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Exercise: Tracing loops

        int sum = 10;
        int count = 0;
        while (count < 6) {
            sum = sum - 1;
            count = count + 2;
        }

Count < 6 count sum

T 0 10

T 2 9

T 4 8

T 6 7

F
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Accumulator pattern

Idea: Repeatedly update a variable (typically in a loop)

Pattern:

1. Initialize accumulator variable

2. Loop until done
1. Update the accumulator variable
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Convenient Assignment 
Syntax
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Convenience syntax: Assignment

Because updating variable values is so common, language such as Java 
provide shorthand syntax for it

• Analogy: contractions in English

AssignSyntax.java
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Convenience syntax: Assignment

Because updating variable values is so common, language such as Java 
provide shorthand syntax for it

• Analogy: contractions in English

sum = sum + 2

count = count + 1

count = count - 1

product = product * 2

divisor = divisor / 2

message = message + “ lol”
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Convenience syntax: Assignment

Because updating variable values is so common, language such as Java 
provide shorthand syntax for it

• Analogy: contractions in English

sum = sum + 2 sum += 2

count = count + 1

count = count - 1

product = product * 2

divisor = divisor / 2

message = message + “ lol”
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Convenience syntax: Assignment

Because updating variable values is so common, language such as Java 
provide shorthand syntax for it

• Analogy: contractions in English

sum = sum + 2 sum += 2

count = count + 1 count += 1

count = count - 1

product = product * 2

divisor = divisor / 2

message = message + “ lol”
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Convenience syntax: Assignment

Because updating variable values is so common, language such as Java 
provide shorthand syntax for it

• Analogy: contractions in English

sum = sum + 2 sum += 2

count = count + 1 count += 1

count = count - 1 count -= 1

product = product * 2

divisor = divisor / 2

message = message + “ lol”
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Convenience syntax: Assignment

Because updating variable values is so common, language such as Java 
provide shorthand syntax for it

• Analogy: contractions in English

sum = sum + 2 sum += 2

count = count + 1 count += 1

count = count - 1 count -= 1

product = product * 2 product *= 2

divisor = divisor / 2

message = message + “ lol”
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Convenience syntax: Assignment

Because updating variable values is so common, language such as Java 
provide shorthand syntax for it

• Analogy: contractions in English

sum = sum + 2 sum += 2

count = count + 1 count += 1

count = count - 1 count -= 1

product = product * 2 product *= 2

divisor = divisor / 2 divisor /= 2

message = message + “ lol”
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Convenience syntax: Assignment

Because updating variable values is so common, language such as Java 
provide shorthand syntax for it

• Analogy: contractions in English

sum = sum + 2 sum += 2

count = count + 1 count += 1

count = count - 1 count -= 1

product = product * 2 product *= 2

divisor = divisor / 2 divisor /= 2

message = message + “ lol” message += “ lol”
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Exercise: Write a program that computes 
powers of 2
Write a program, LoopPow2.java, that computes powers of twos. For 
example,

$ java LoopPow2
Enter an exponent: 0
2 to the power of 0 is 1

$ java LoopPow
Enter an exponent: 1
2 to the power of 1 is 2

$ java LoopPow
Enter an exponent: 4
2 to the power of 4 is 16
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Exercise: Non-recursive blast off 

take a number from the user, count down from that number to 0 and 
then print “BLAST OFF!”
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Exercise: Non-recursive Factorial 
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