
CS 113 – Computer 
Science I

Lecture 08 – String 
Methods & Recursion

Thursday  02/15/2024

02/15/24 CS 131 – Spring '24 - Lecture 07 1



Announcements

• HW02 deadline extended to Sunday

Answer the Piazza OH poll 

02/15/24 CS 131 – Spring '24 - Lecture 07 2



Agenda

String Comparison review

Recursion

02/15/24 CS 131 – Spring '24 - Lecture 07 3



Comparing strings

• In Java, you cannot directly compare strings using ==

• Instead, use compareTo
• Javadocs: https://docs.oracle.com/javase/7/docs/api/java/lang/String.html

02/15/24 CS 131 – Spring '24 - Lecture 07 4



Recursion

02/15/24 CS 131 – Spring '24 - Lecture 07 5



Recursion

a function that calls itself 

Base case that handles the smallest problem

Rule that does something then calls itself on a smaller 
version of the problem

02/15/24 CS 131 – Spring '24 - Lecture 07 6



Recursion example – print “hello” 5 times

Base case: When the number of times to print is 0, stop printing

Rule: Print “hello” once and then print “hello” 4 times

02/15/24 CS 131 – Spring '24 - Lecture 07 7



Recursion

a function that calls itself 

Each recursive call should move towards a base case where a direct solution can be found.

Base case that tells us when to stop 

Rule that does something then calls itself on a smaller 
version of the problem

02/15/24 CS 131 – Spring '24 - Lecture 07 8



Recursive functions – base case

Conditional statement that prevents infinite repetitions 

Usually handles cases where:

input is empty

problem is at its smallest size

02/15/24 CS 131 – Spring '24 - Lecture 07 9



Recursion Example - Factorial

• What is a factorial? n!
• product of all integers less than or equal to n

• n! = n * n-1 * n-2 ..... 1
• 5! = 5 * 4 * 3 * 2 * 1 
• 4! = 4 * 3 * 2 * 1
• 3! = 3 * 2 * 1

• Factorial.java
• What is the base case?

02/15/24 CS 131 – Spring '24 - Lecture 07 10



Visualizing recursion – Factorial example

factorial(5) =

         = 5 * factorial(4) 

         = 5 * 4                  * factorial(3)

         = 5 * 4  * 3                * factorial(2)

         = 5 * 4  * 3  * 2               * factorial(1)

         = 5 * 4  * 3  * 2 * 1

02/15/24 CS 131 – Spring '24 - Lecture 07 11



Exercise: Blast Off

Write a recursive method: void BlastOff(int n)

Which prints a count down from n to 1 and then prints “Blast off!”

Example:
BlastOff(3) prints
3
2
1
Blast off! 

12



Recursion Example – Contains letter

Write a method called “containsLetter” that determines if a String 
contains a given character

Question: What are the parameters?

1. The character to look for

2. The string to be looking in 

Question: What is the return type?

02/15/24 CS 131 – Spring '24 - Lecture 07 13



Recursion Visualization – Contains letter

contains(“l”, “apple”) = 

contains(“l”, “apple”) 

contains(“l”, “pple”)

contains(“l”, “ple”) 

contains(“l”, “le”) 

return true

 

02/15/24 CS 131 – Spring '24 - Lecture 07 14



Recursion containsLetter

15



Recursion Example – printVowels

Your turn!

Write a recursive function that prints just the vowels in a String

02/15/24 CS 131 – Spring '24 - Lecture 07 16



Recursion Example – IndexOf letter

Your turn again! Write a method called IndexOf. 

Arguments: String (haystack), Character (needle)

Return: the index of the character in the String. You can assume needle 
is in haystack. 

02/15/24 CS 131 – Spring '24 - Lecture 07 17



Recursion limitations

• Limited number of times we can recurse
• Stackoverflow – too many frames

• Potentially memory inefficient
• If we copy data in subproblems – we’ll worry about this in a few weeks

• Performance: might duplicate unnecessary work 
• We’ll define performance later in the semester

02/15/24 CS 131 – Spring '24 - Lecture 07 18



Style gg=G
• How we format our programs is very important

• Like rules of etiquette around eating and keep a clean appearance
• Like punctuation rules, it helps make text more readable

• Variable names should be descriptive

• Indentation is very important
• Every statement inside a pair of braces must be indented

• Braces should be placed consistently

02/15/24 CS 131 – Spring '24 - Lecture 07 19



Arrays

02/20/24 CS 131 – Fall ‘23 - Lecture 08 20



Arrays

Filing Cabinet 

Idea: Store multiple values into a single variable

Values are sequential

Analogous to a list 

02/20/24 CS 131 – Fall ‘23 - Lecture 08 21



Arrays

double val = 3.0;

double[] vals = {3.0, 6.0, 7.0, -2.5};

3.0

val

3.0

vals

6.0 7.0 -2.5

02/20/24 CS 131 – Fall ‘23 - Lecture 08 22



Array Indexing

Access individual elements of an array with indexing

array[index]

We use zero-based indexing

first element is 0

last element is length-1

Accessing indices out of range results in a runtime error!

02/20/24 CS 131 – Fall ‘23 - Lecture 08 23



Arrays

Three ways to initialize an array

1. With an initial value
int[] numbers = {1, 2, 5}; 

2. With allocated space, but uninitialized
int[] numbers = new int[3];

3. With an empty array reference

   int[] numbers = null;

02/20/24 CS 131 – Fall ‘23 - Lecture 08 24



Arrays

int[] x = {2, 7, 5};

System.out.println(x.length); //what will this print?

.length field tells us how many elements are in the array 

Once an array is full, you cannot add more elements to it! 

25


