
CS 113 – Computer
Science I

Lecture 07 – Recursion

Tuesday 09/26/2024

9/26/2024 CS 113 – Fall ‘24 - Lecture 07 1

Announcements

• HW03 – released
• Due Monday 09/30 11:59pm

• Thursday 10/03
• Rosh Hashana

• Either no class or guest lecture, TBD

• Office hours:
• Adam’s 2:40-4:00pm today

9/26/2024 CS 113 – Fall ‘24 - Lecture 07 2

HW02 feedback

Lessons learned – emphasis on asking questions – great!

How to ask for help:

• Explain what you are trying to do
• Give a minimal example

• Someone else should be able to replicate the problem easily

• Shouldn’t require any data/information that only you have
• Explain what you think should happen
• Explain what you get instead (copy / paste or screenshot if you can)

• Explain what else you’ve tried

9/26/2024 CS 113 – Fall ‘24 - Lecture 07 3

HW03

Implementing a bunch of String related methods

Start by writing method stubs

Example: Write a method called isAbecedarian that takes a String
and returns a boolean indicating whether the word is
abecedarian.

Upload method stubs to gradescope

9/26/2024 CS 113 – Fall ‘24 - Lecture 07 4

HW03

9/26/2024 CS 113 – Fall ‘24 - Lecture 07 5

Agenda

Recursion

9/26/2024 CS 113 – Fall ‘24 - Lecture 07 6

Exercise: Blackjack

Write a program Blackjack.java which generates a random value
between 2 and 21

• If the value is 21, print the value and “Blackjack” to the console

• If the value is between 17 and 20, print the value and “Stand” to the
console

• If the value is less than 17, print the value and “Hit me!” to the
console

9/26/2024 CS 113 – Fall ‘24 - Lecture 07 7

Top down design

1. Identify features of the program
1. List them out!

2. Identify verbs and nouns in feature list
1. Verbs: functions
2. Nouns: objects/variables

3. Sketch major steps – how features should fit together
1. Algorithm!

4. Write program skeleton
1. Include function stubs (placeholders for our functions)
2. Function stub: empty function with parameters and return type

5. Implement and test function stubs one at a time

9/26/2024 CS 113 – Fall ‘24 - Lecture 07 8

Recursion

9/26/2024 CS 113 – Fall ‘24 - Lecture 07 10

Recursion

a function that calls itself

“Simple” way to solve “similar” problems

9/26/2024 CS 113 – Fall ‘24 - Lecture 07 11

Creating a recursive algorithms

Rule that “does work” then ”calls itself” on a smaller
version of the problem

Base case that handles the smallest problem

 Prevents “infinite recursion”

9/26/2024 CS 113 – Fall ‘24 - Lecture 07 12

Recursion example – print “hello” 5 times

Rule: Print “hello” once and then print “hello” 4 times

Base case: When the number of times to print is 0, stop printing

9/26/2024 CS 113 – Fall ‘24 - Lecture 07 13

Recursive functions – base case

Conditional statement that prevents infinite repetitions

Usually handles cases where:

 input is empty

 problem is at its smallest size

9/26/2024 CS 113 – Fall ‘24 - Lecture 07 14

Recursion Example - Factorial

𝑛! = 𝑛 ∗ 𝑛 − 1 ∗ 𝑛 − 2 ∗ … ∗ 1

3! = 3 * 2 * 1 = 6

4! = 4 * 3 * 2 * 1 = 24

9/26/2024 CS 113 – Fall ‘24 - Lecture 07 15

Visualizing recursion – Factorial example

factorial(5) =

 = 5 * factorial(4)

 = 5 * 4 * factorial(3)

 = 5 * 4 * 3 * factorial(2)

 = 5 * 4 * 3 * 2 * factorial(1)

 = 5 * 4 * 3 * 2 * 1

9/26/2024 CS 113 – Fall ‘24 - Lecture 07 16

Recursion Example – Contains letter

Write a method called “containsLetter” that determines if a String
contains a given character

Question: What are the parameters?

 1. The String to be looking in

 2. The character to look for

Question: What is the return type?

9/26/2024 CS 113 – Fall ‘24 - Lecture 07 17

Recursion Example – Contains letter

How can we break this problem down into smaller problems?

9/26/2024 CS 113 – Fall ‘24 - Lecture 07 18

contains(“l”, “apple”) =

 contains(“l”, “a”) OR

 contains(“l”, “p”) OR

 contains(“l”, “p”) OR

 contains(“l”, “l”) OR

 contains(“l”, “e”) OR

Recursion Visualization – Contains letter

contains(“l”, “apple”) =

 contains(“l”, “apple”)

 contains(“l”, “pple”)

 contains(“l”, “ple”)

 contains(“l”, “le”)

 return true

9/26/2024 CS 113 – Fall ‘24 - Lecture 07 19

Recursion Example – IndexOf letter

Write a method called IndexOf.

Arguments: String (haystack), Character (needle)

Return: the index of the character in the String, if the chatacter isnt
there, return:

 -1.

9/26/2024 CS 113 – Fall ‘24 - Lecture 07 20

Recursion Example – printVowels

Write a recursive function that prints just the vowels in a String

9/26/2024 CS 113 – Fall ‘24 - Lecture 07 21

Recursion limitations

• Limited number of times we can recurse
• Stackoverflow – too many frames

• Potentially memory inefficient
• If we copy data in subproblems – we’ll worry about this in a few weeks

• Performance: might duplicate unnecessary work
• We’ll define performance later in the semester

9/26/2024 CS 113 – Fall ‘24 - Lecture 07 22

Style
• How we format our programs is very important

• Like rules of etiquette around eating and keep a clean appearance

• Like punctuation rules, it helps make text more readable

• Variable names should be descriptive

• Indentation is very important
• Every statement inside a pair of braces must be indented

• Braces should be placed consistently

9/26/2024 CS 113 – Fall ‘24 - Lecture 07 23

	Slide 1: CS 113 – Computer Science I Lecture 07 – Recursion
	Slide 2: Announcements
	Slide 3: HW02 feedback
	Slide 4: HW03
	Slide 5: HW03
	Slide 6: Agenda
	Slide 7: Exercise: Blackjack
	Slide 8: Top down design
	Slide 10: Recursion
	Slide 11: Recursion
	Slide 12: Creating a recursive algorithms
	Slide 13: Recursion example – print “hello” 5 times
	Slide 14: Recursive functions – base case
	Slide 15: Recursion Example - Factorial
	Slide 16: Visualizing recursion – Factorial example
	Slide 17: Recursion Example – Contains letter
	Slide 18: Recursion Example – Contains letter
	Slide 19: Recursion Visualization – Contains letter
	Slide 20: Recursion Example – IndexOf letter
	Slide 21: Recursion Example – printVowels
	Slide 22: Recursion limitations
	Slide 23: Style

