CS 113 — Computer
Science |

Lecture O/ — Recursion

Tuesday 09/26/2024

CS 113 —Fall ‘24 - Lecture 07

Announcements

* HWO03 — released
* Due Monday 09/30 11:59pm

* Thursday 10/03

* Rosh Hashana
* Either no class or guest lecture, TBD

e Office hours:
 Adam’s 2:40-4:00pm today

HWO02 feedback

Lessons learned — emphasis on asking questions — great!

How to ask for help:

* Explain what you are trying to do
* Give a minimal example

* Someone else should be able to replicate the problem easily

* Shouldn’t require any data/information that only you have
* Explain what you think should happen
* Explain what you get instead (copy / paste or screenshot if you can)

* Explain what else you've tried

9/26/2024 CS 113 —Fall 24 - Lecture 07

HWO3

Implementing a bunch of String related methods

Start by writing method stubs

Example: Write a method called isAbecedarian that takes a String
and returns a boolean indicating whether the word is
abecedarian.

Upload method stubs to gradescope

9/26/2024 CS 113 —Fall 24 - Lecture 07

HWO3

The autograder failed to execute correctly. Please ensure that your submission is valid.
Contact your course staff for help in debugging this issue. Make sure to include a link to
this page so that they can help you most effectively.

error: cannot find symbol assertTrue("isAbecedarian("abdest") should return true"

: error: cannot find symbol assertFalse("isDoubloon("baddeb") should return false"

9/26/2024 CS 113 —Fall 24 - Lecture 07 5

Agenda

Recursion

Exercise: Blackjack

Write a program Blackjack.java which generates a random value
between 2 and 21

* If the value is 21, print the value and “Blackjack” to the console

* If the value is between 17 and 20, print the value and “Stand” to the
console

* If the value is less than 17, print the value and “Hit me!” to the
console

Top down design

1.

3.

4.

5.

|dentify features of the program
1. List them out!

|dentify verbs and nouns in feature list

1. Verbs: functions
2. Nouns: objects/variables

Sketch major steps — how features should fit together
1. Algorithm!

Write program skeleton
1. Include function stubs (placeholders for our functions)
2. Function stub: empty function with parameters and return type

Implement and test function stubs one at a time

Recursion

Recursion

a function that calls itself

“Simple” way to solve “similar” problems

Creating a recursive algorithms

Rule that “does work” then “calls itself” on a smaller
version of the problem

Base case that handles the smallest problem

Prevents “infinite recursion”

Recursion example — print “hello” 5 times

Rule: Print “hello” once and then print “hello” 4 times
Base case: When the number of times to print is O, stop printing

Recursive functions — base case

Conditional statement that prevents infinite repetitions

Usually handles cases where:
Input is empty
problem is at its smallest size

Recursion Example - Factorial
nN=n+xn—1)«n-—-2)* ..x1
31=3*%2*1=6

41 =4*3*2%*1=24

Visualizing recursion — Factorial example

factorial(5) =
=5 * factorial(4)

=5*4 * factorial(3)
=5%*4 *3 * factorial(2)
=5*4 *3 *72 * factorial(1)

=5%4 *3 *2%]

Recursion Example — Contains letter

Write a method called “containsLetter” that determines if a String
contains a given character

Question: What are the parameters?
1. The String to be looking in

2. The character to look for

Question: What is the return type?

Recursion Example — Contains letter

How can we break this problem down into smaller problems?

(Il” o

contains(“l”, “apple”) =
contains(“l”, “a”) OR
contains(“l”, “p”) OR
contains(“l”, “p”) OR
contains(“l”, ”I”) OR

contains(“l”, “e”) OR

Recursion Visualization — Contains letter
l(III’ llapple") —

IIIII’ (lapplell)

(IIII’ llpple”)

HIII o
’

contains(
contains(
contains(

ple”)
contains(“l”, “le”)

contains(

return true

Recursion Example — IndexOf letter

Write a method called IndexOf.

Arguments: String (haystack), Character (needle)

Return: the index of the character in the String, if the chatacter isnt
there, return:

-1.

Recursion Example — printVowels

Write a recursive function that prints just the vowels in a String

Recursion limitations

* Limited number of times we can recurse
e Stackoverflow —too many frames

* Potentially memory inefficient
* If we copy data in subproblems — we’ll worry about this in a few weeks

* Performance: might duplicate unnecessary work
 We'll define performance later in the semester

Style

* How we format our programs is very important

* Like rules of etiquette around eating and keep a clean appearance
* Like punctuation rules, it helps make text more readable

* Variable names should be descriptive

* Indentation is very important
* Every statement inside a pair of braces must be indented

* Braces should be placed consistently

	Slide 1: CS 113 – Computer Science I Lecture 07 – Recursion
	Slide 2: Announcements
	Slide 3: HW02 feedback
	Slide 4: HW03
	Slide 5: HW03
	Slide 6: Agenda
	Slide 7: Exercise: Blackjack
	Slide 8: Top down design
	Slide 10: Recursion
	Slide 11: Recursion
	Slide 12: Creating a recursive algorithms
	Slide 13: Recursion example – print “hello” 5 times
	Slide 14: Recursive functions – base case
	Slide 15: Recursion Example - Factorial
	Slide 16: Visualizing recursion – Factorial example
	Slide 17: Recursion Example – Contains letter
	Slide 18: Recursion Example – Contains letter
	Slide 19: Recursion Visualization – Contains letter
	Slide 20: Recursion Example – IndexOf letter
	Slide 21: Recursion Example – printVowels
	Slide 22: Recursion limitations
	Slide 23: Style

