
Think Java - BMC CS 113 (Fall ’23)

How to Think Like a Computer Scientist

Bryn Mawr Version 0.0.2 (based on Think Java - 2nd Edition, Version 7.1.0)

Think Java - BMC CS 113 (Fall ’23)

How to Think Like a Computer Scientist

Bryn Mawr Version 0.0.2 (based on Think Java - 2nd Edition, Version 7.1.0)

Adam Poliak (heavily adopted from Allen B. Downey
and Chris Mayfield)

Copyright © 2023 Adam Poliak (heavily adopted from Allen B. Downey and

Chris Mayfield).

101 N. Merion Ave

Bryn Mawr, PA 19010

Permission is granted to copy, distribute, and/or modify this work under the

terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0

International License, which is available at https://creativecommons.org/

licenses/by-nc-sa/4.0/.

The original form of this book is LATEX source code. Compiling this code has

the effect of generating a device-independent representation of the book, which

can be converted to other formats and printed.

The LATEX source for this book is available https://github.com/azpoliak/

ThinkJava2-BMC-CS113. This is based on the original source from https:

//thinkjava.org/ and https://github.com/ChrisMayfield/ThinkJava2.

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://github.com/azpoliak/ThinkJava2-BMC-CS113
https://github.com/azpoliak/ThinkJava2-BMC-CS113
https://thinkjava.org/
https://thinkjava.org/
https://github.com/ChrisMayfield/ThinkJava2

Contents

Preface xv

1 Computer Programming 1

1.1 What Is a Computer? . 1

1.2 What Is Programming? . 2

1.3 The Command-line . 3

1.4 The Hello World Program 4

1.5 Compiling Java Programs 6

1.6 Displaying Two Messages . 7

1.7 Formatting Source Code . 8

1.8 Using Escape Sequences . 10

1.9 What Is Computer Science? 11

1.10 Debugging Programs . 12

1.11 Vocabulary . 13

1.12 Exercises . 15

2 Variables and Operators 19

2.1 Declaring Variables . 19

2.2 Assigning Variables . 21

2.3 Memory Diagrams . 22

vi CONTENTS

2.4 Printing Variables . 23

2.5 Arithmetic Operators . 24

2.6 Floating-Point Numbers . 25

2.7 Rounding Errors . 27

2.8 Operators for Strings . 28

2.9 Compiler Error Messages . 29

2.10 Other Types of Errors . 31

2.11 Vocabulary . 32

2.12 Exercises . 33

3 Input and Output 37

3.1 The System Class . 37

3.2 The Scanner Class . 38

3.3 Language Elements . 40

3.4 Literals and Constants . 41

3.5 Formatting Output . 43

3.6 Reading Error Messages . 44

3.7 Type Cast Operators . 45

3.8 Remainder Operator . 47

3.9 Putting It All Together . 47

3.10 The Scanner Bug . 49

3.11 Vocabulary . 50

3.12 Exercises . 52

4 Methods and Testing 55

4.1 Defining New Methods . 55

4.2 Flow of Execution . 57

CONTENTS vii

4.3 Parameters and Arguments 58

4.4 Multiple Parameters . 60

4.5 Stack Diagrams . 61

4.6 Math Methods . 62

4.7 Composition . 63

4.8 Return Values . 65

4.9 Incremental Development . 66

4.10 Vocabulary . 69

4.11 Exercises . 70

5 Conditionals and Logic 75

5.1 Relational Operators . 75

5.2 The if-else Statement . 76

5.3 Chaining and Nesting . 78

5.4 The switch Statement . 79

5.5 Logical Operators . 81

5.6 De Morgan’s Laws . 82

5.7 Boolean Variables . 83

5.8 Boolean Methods . 84

5.9 Validating Input . 85

5.10 Example Program . 87

5.11 Vocabulary . 88

5.12 Exercises . 89

6 Recursive Methods 93

6.1 Recursive Void Methods . 93

6.2 Recursive Stack Diagrams 95

viii CONTENTS

6.3 Value-Returning Methods 96

6.4 The Leap of Faith . 99

6.5 Counting Up Recursively . 101

6.6 Binary Number System . 101

6.7 Recursive Binary Method . 103

6.8 CodingBat Problems . 104

6.9 Vocabulary . 106

6.10 Exercises . 106

7 Objects: Strings 111

7.1 Primitives vs Objects . 111

7.2 Characters . 112

7.3 String Iteration . 114

7.4 The indexOf Method . 116

7.5 Substrings . 117

7.6 String Comparison . 118

7.7 String Formatting . 119

7.8 Vocabulary . 120

7.9 Exercises . 121

8 Arrays and References 125

8.1 Creating Arrays . 127

8.2 Accessing Elements . 128

8.3 Displaying Arrays . 129

8.4 Copying Arrays . 130

8.5 Traversing Arrays . 132

8.6 Random Numbers . 134

CONTENTS ix

8.7 Counting Characters . 135

8.8 Count of value . 139

8.9 Vocabulary . 140

8.10 Exercises . 141

9 Loops 145

9.1 The while Statement . 145

9.2 Increment and Decrement 147

9.3 The for Statement . 148

9.4 Nested Loops . 150

9.5 Characters . 151

9.6 Which Loop to Use . 153

9.7 String Iteration . 154

9.8 Array Iteration . 155

9.9 Building a Histogram . 157

9.10 The Enhanced for Loop . 159

9.11 Vocabulary . 160

9.12 Exercises . 161

10 Immutable Objects 165

10.1 Primitives vs Objects . 165

10.2 The null Keyword . 167

10.3 Strings Are Immutable . 168

10.4 Wrapper Classes . 169

10.5 Command-Line Arguments 170

10.6 Argument Validation . 172

10.7 BigInteger Arithmetic . 174

x CONTENTS

10.8 Incremental Design . 175

10.9 More Generalization . 177

10.10 Vocabulary . 178

10.11 Exercises . 179

11 Mutable Objects 185

11.1 Point Objects . 185

11.2 Objects as Parameters . 187

11.3 Objects as Return Values . 188

11.4 Rectangles Are Mutable . 189

11.5 Aliasing Revisited . 190

11.6 Java Library Source . 191

11.7 Class Diagrams . 192

11.8 Scope Revisited . 193

11.9 Garbage Collection . 194

11.10 Mutable vs Immutable . 195

11.11 StringBuilder Objects . 196

11.12 Vocabulary . 198

11.13 Exercises . 198

12 Designing Classes 201

12.1 The Time Class . 202

12.2 Constructors . 203

12.3 Value Constructors . 204

12.4 Getters and Setters . 206

12.5 Displaying Objects . 208

12.6 The toString Method . 209

CONTENTS xi

12.7 The equals Method . 210

12.8 Adding Times . 212

12.9 Vocabulary . 214

12.10 Exercises . 215

13 Arrays of Objects 219

13.1 Card Objects . 220

13.2 Card toString . 221

13.3 Class Variables . 223

13.4 The compareTo Method . 224

13.5 Cards Are Immutable . 225

13.6 Arrays of Cards . 226

13.7 Linear Search . 228

13.8 Binary Search . 229

13.9 Tracing the Code . 231

13.10 Vocabulary . 232

13.11 Exercises . 232

14 Objects of Arrays 235

14.1 Decks of Cards . 235

14.2 Shuffling Decks . 237

14.3 Selection Sort . 238

14.4 Merge Sort . 239

14.5 Subdecks . 240

14.6 Merging Decks . 241

14.7 Adding Recursion . 242

14.8 Static Context . 243

xii CONTENTS

14.9 Piles of Cards . 245

14.10 Playing War . 247

14.11 Vocabulary . 248

14.12 Exercises . 249

15 Extending Classes 253

15.1 CardCollection . 254

15.2 Inheritance . 256

15.3 Dealing Cards . 258

15.4 The Player Class . 260

15.5 The Eights Class . 262

15.6 Class Relationships . 266

15.7 Vocabulary . 267

15.8 Exercises . 267

16 Arrays of Arrays 269

16.1 Conway’s Game of Life . 269

16.2 The Cell Class . 271

16.3 Two-Dimensional Arrays . 272

16.4 The GridCanvas Class . 274

16.5 Other Grid Methods . 275

16.6 Starting the Game . 276

16.7 The Simulation Loop . 277

16.8 Exception Handling . 278

16.9 Counting Neighbors . 279

16.10 Updating the Grid . 281

16.11 Vocabulary . 283

CONTENTS xiii

16.12 Exercises . 283

17 Reusing Classes 287

17.1 Langton’s Ant . 287

17.2 Refactoring . 290

17.3 Abstract Classes . 291

17.4 UML Diagram . 293

17.5 Vocabulary . 294

17.6 Exercises . 295

18 Advanced Topics 297

18.1 Polygon Objects . 297

18.2 Adding Color . 298

18.3 Regular Polygons . 299

18.4 More Constructors . 302

18.5 An Initial Drawing . 303

18.6 Blinking Polygons . 306

18.7 Interfaces . 308

18.8 Event Listeners . 310

18.9 Timers . 313

18.10 Vocabulary . 315

18.11 Exercises . 315

A Tools 317

A.1 Installing DrJava . 317

A.2 DrJava Interactions . 319

A.3 Command-Line Interface . 320

xiv CONTENTS

A.4 Command-Line Testing . 321

A.5 Running Checkstyle . 323

A.6 Tracing with a Debugger . 324

A.7 Testing with JUnit . 325

A.8 Vocabulary . 327

B Javadoc 329

B.1 Reading Documentation . 330

B.2 Writing Documentation . 332

B.3 Javadoc Tags . 333

B.4 Example Source File . 335

B.5 Vocabulary . 338

C Graphics 339

C.1 Creating Graphics . 339

C.2 Graphics Methods . 340

C.3 Example Drawing . 342

C.4 Vocabulary . 344

C.5 Exercises . 344

D Debugging 347

D.1 Compile-Time Errors . 347

D.2 Run-Time Errors . 351

D.3 Logic Errors . 355

Index 361

Preface

Think Java is an introduction to computer science and programming intended

for readers with little or no experience. We start with the most basic concepts

and are careful to define all terms when they are first used. The book presents

each new idea in a logical progression. Larger topics, like control flow statements

and object-oriented programming, are divided into smaller examples and introduced

over the course of several chapters.

This book is intentionally concise. Each chapter is 12–14 pages and covers the

material for one week of a college course. It is not meant to be a comprehensive

presentation of Java, but rather, an initial exposure to programming constructs

and techniques. We begin with small problems and basic algorithms and work

up to object-oriented design. In the vocabulary of computer science pedagogy,

this book uses the “objects late” approach.

The Philosophy Behind the Book

Here are the guiding principles that make the book the way it is:

One concept at a time: We break down topics that give beginners trouble

into a series of small steps, so that they can exercise each new concept

in isolation before continuing.

Balance of Java and concepts: The book is not primarily about Java; it

uses code examples to demonstrate computer science. Most chapters

start with language features and end with concepts.

xvi PREFACE

Conciseness: An important goal of the book is to be small enough so that

students can read and understand the entire text in a one-semester

college or AP course.

Emphasis on vocabulary: We try to introduce the minimum number of

terms and define them carefully when they are first used. We also

organize them in glossaries at the end of each chapter.

Program development: There are many strategies for writing programs,

including bottom-up, top-down, and others. We demonstrate multiple

program development techniques, allowing readers to choose methods

that work best for them.

Multiple learning curves: To write a program, you have to understand the

algorithm, know the programming language, and be able to debug errors.

We discuss these and other aspects throughout the book and summarize

our advice in Appendix D.

Object-Oriented Programming

Some Java books introduce classes and objects immediately; others begin with

procedural programming and transition to object-oriented more gradually.

Many of Java’s object-oriented features are motivated by problems with previous

languages, and their implementations are influenced by this history. Some

of these features are hard to explain when people aren’t familiar with the

problems they solve.

We get to object-oriented programming as quickly as possible (beginning with

Chapter 10). But we introduce concepts one at a time, as clearly as possible,

in a way that allows readers to practice each idea in isolation before moving

on. So it takes some time to get there.

You can’t write Java programs (even Hello World) without encountering object-

oriented features. In some cases we explain a feature briefly when it first

appears, and then explain it more deeply later on.

If you read the entire book, you will see nearly every topic required for Java SE

Programmer I certification. Supplemental lessons are available in the official

Java tutorials on Oracle’s website (https://thinkjava.org/tutorial).

https://thinkjava.org/tutorial

PREFACE xvii

This book is also well suited to prepare high school students for the AP

Computer Science A exam, which includes object-oriented design and implementation.

(AP is a registered trademark of The College Board.) A mapping of Think

Java section numbers to the AP course is available on our website: https:

//thinkjava.org/.

Changes to the Second Edition

This new edition was written over several years, with feedback from dozens

of instructors and hundreds of students. A complete history of all changes is

available on GitHub. Here are some of the highlights:

Chapters 1–4: We reordered the material in Chapter 1 to present a more

interesting balance of theory and practice. Chapters 2–3 are much

cleaner now too. Methods are now presented in a single chapter, along

with additional in-depth examples.

Chapters 5–8: We rearranged these chapters a lot, added many examples

and new figures, and removed unnecessary details. Strings are covered

earlier (before arrays) so that readers can apply them to loop problems.

The material on recursion is now a chapter, and we added new sections

to explain binary numbers and CodingBat.

Chapters 9–12: Our main goal for these chapters was to provide better

explanations and more diagrams. Chapters 9–10 focus more on immutable

versus mutable objects, and we added new sections on BigInteger and

StringBuilder. The other content is largely the same, but it should be

easier to understand now.

Chapters 13–17: We balanced the amount of content in Chapters 13–14 by

moving ArrayLists earlier, and we implement the “War” card game as

another example. Chapters 15–17 are brand new in this edition; they

cover more advanced topics including 2D arrays, graphics, exceptions,

abstract classes, interfaces, and events.

Appendixes: We added Appendix B to explain documentation comments

and Javadoc in more detail. The other three appendixes that were

present in the first edition have been revised for clarity and layout.

https://thinkjava.org/
https://thinkjava.org/

xviii PREFACE

About the Appendixes

The chapters of this book are meant to be read in order, because each one

builds on the previous one. We also include several appendixes with material

that can be read at any time:

Appendix A, “Tools”

This appendix explains how to download and install Java so you can

compile programs on your computer. It also provides a brief introduction

to DrJava—an integrated development environment designed primarily

for students—and other development tools, including Checkstyle for code

quality and JUnit for testing.

Appendix B, “Javadoc”

It’s important to document your classes and methods so that other

programmers (including yourself in the future) will know how to use

them. This appendix explains how to read documentation, how to write

documentation, and how to use the Javadoc tool.

Appendix C, “Graphics”

Java provides libraries for working with graphics and animation, and

these topics can be engaging for students. The libraries require object-

oriented features that students will not completely understand until after

Chapter 11, but they can be used much earlier.

Appendix D, “Debugging”

We provide debugging suggestions throughout the book, but this appendix

provides many more suggestions on how to debug your programs. We

recommend that you review this appendix frequently as you work through

the book.

Using the Code Examples

Most of the code examples in this book are available from a Git repository

at https://github.com/ChrisMayfield/ThinkJavaCode2. Git is a “version

control system” that allows you to keep track of the files that make up a

project. A collection of files under Git’s control is called a “repository”.

https://github.com/ChrisMayfield/ThinkJavaCode2

PREFACE xix

GitHub is a hosting service that provides storage for Git repositories and a

convenient web interface. It provides several ways to work with the code:

� You can create a copy of the repository on GitHub by clicking the Fork

button. If you don’t already have a GitHub account, you’ll need to

create one. After forking, you’ll have your own repository on GitHub

that you can use to keep track of code you write. Then you can “clone”

the repository, which downloads a copy of the files to your computer.

� Alternatively, you could clone the original repository without forking. If

you choose this option, you don’t need a GitHub account, but you won’t

be able to save your changes on GitHub.

� If you don’t want to use Git at all, you can download the code in a

ZIP archive using the Clone button on the GitHub page, or this link:

https://thinkjava.org/code2zip.

After you clone the repository or unzip the ZIP file, you should have a directory

named ThinkJavaCode2 with a subdirectory for each chapter in the book.

The examples in this book were developed and tested using OpenJDK 11. If

you are using a more recent version, everything should still work. If you are

using an older version, some of the examples might not.

Acknowledgments

Many people have sent corrections and suggestions over the years, and we

appreciate their valuable feedback! This list begins with Version 4.0 of the

open source edition, so it omits those who contributed to earlier versions:

� Ellen Hildreth used this book to teach Data Structures at Wellesley

College and submitted a whole stack of corrections and suggestions.

� Tania Passfield pointed out that some glossaries had leftover terms that

no longer appeared in the text.

� Elizabeth Wiethoff noticed that the series expansion of exp(−x2) was

wrong. She has also worked on a Ruby version of the book.

https://thinkjava.org/code2zip

xx PREFACE

� Matt Crawford sent in a whole patch file full of corrections.

� Chi-Yu Li pointed out a typo and an error in one of the code examples.

� Doan Thanh Nam corrected an example.

� Muhammad Saied translated the book into Arabic and found several

errors in the process.

� Marius Margowski found an inconsistency in a code example.

� Leslie Klein discovered another error in the series expansion of exp(−x2),

identified typos in card array figures, and helped clarify several exercises.

� Micah Lindstrom reported half a dozen typos and sent corrections.

� James Riely ported the textbook source from LaTeX to Sphinx.

http://fpl.cs.depaul.edu/jriely/thinkapjava/

� Peter Knaggs ported the book to C#.

https://www.rigwit.co.uk/think/sharp/

� Heidi Gentry-Kolen recorded several video lectures that follow the book.

https://www.youtube.com/user/digipipeline

� Waldo Ribeiro submitted a pull request that corrected a dozen typos.

� Michael Stewart made several suggestions for improving the first half of

the book.

� Steven Richardson adapted the book for an online course and contributed

many ideas for improving the text.

� Fazl Rahman provided detailed feedback, chapter by chapter, and offered

many suggestions for improving the text.

We are especially grateful to the technical reviewers of the O’Reilly Media

first edition: Blythe Samuels, David Wisneski, and Stephen Rose. They found

errors, made many great suggestions, and helped make the book much better.

Likewise, we thank Marc Loy for his thorough review of the O’Reilly Media

second edition. He contributed many corrections, insights, and clarifications.

http://fpl.cs.depaul.edu/jriely/thinkapjava/
https://www.rigwit.co.uk/think/sharp/
https://www.youtube.com/user/digipipeline

PREFACE xxi

Many students have given exceptional feedback, including Ian Staton, Tanner

Wernecke, Jacob Green, Rasha Abuhantash, Nick Duncan, Kylie Davidson,

Shirley Jiang, Elena Trafton, Jennifer Gregorio, and Azeem Mufti.

Other contributors who found one or more typos: Stijn Debrouwere, Guy

Driesen, Andai Velican, Chris Kuszmaul, Daniel Kurikesu, Josh Donath, Rens

Findhammer, Elisa Abedrapo, Yousef BaAfif, Bruce Hill, Matt Underwood,

Isaac Sultan, Dan Rice, Robert Beard, Daniel Pierce, Michael Giftthaler, Chris

Fox, Min Zeng, Markus Geuss, Mauricio Gonzalez, Enrico Sartirana, Kasem

Satitwiwat, Jason Miller, Kevin Molloy, Cory Culbertson, Will Crawford,

Shawn Brenneman, Tom Nguyen, and Ala-Uddin Mohammad.

If you have additional comments or ideas about the text, please send them to:

feedback@greenteapress.com.

Allen Downey and Chris Mayfield

mailto:feedback@greenteapress.com

xxii PREFACE

Chapter 1

Computer Programming

The goal of this book is to teach you to think like a computer scientist.

This way of thinking combines some of the best features of mathematics,

engineering, and natural science. Like mathematicians, computer scientists use

formal languages to denote ideas—specifically, computations. Like engineers,

they design things, assembling components into systems and evaluating trade-

offs among alternatives. And like scientists, they observe the behavior of

complex systems, form hypotheses, and test predictions.

An important skill for a computer scientist is problem solving. It involves

the ability to formulate problems, think creatively about solutions, and express

solutions clearly and accurately. As it turns out, the process of learning to

program computers is an excellent opportunity to develop problem-solving

skills. On one level, you will be learning to write Java programs, a useful skill

by itself. But on another level, you will use programming as a means to an

end. As we go along, that end will become clearer.

1.1 What Is a Computer?

When people hear the word computer, they often think of a desktop or a

laptop. Not surprisingly, searching for “computer” on Google Images (https:

//images.google.com/) displays rows and rows of these types of machines.

However, in a more general sense, a computer can be any type of device that

stores and processes data.

https://images.google.com/
https://images.google.com/

2 Chapter 1 Computer Programming

Dictionary.com defines a computer as “a programmable electronic device designed

to accept data, perform prescribed mathematical and logical operations at high

speed, and display the results of these operations. Mainframes, desktop and

laptop computers, tablets, and smartphones are some of the different types of

computers.”

Each type of computer has its own unique design, but internally they all share

the same type of hardware. The two most important hardware components

are processors (or CPUs) that perform simple calculations and memory

(or RAM) that temporarily stores information. Figure 1.1 shows what these

components look like.

Figure 1.1: Example processor and memory hardware.

Users generally see and interact with touchscreens, keyboards, and monitors,

but it’s the processors and memory that perform the actual computation.

Nowadays it’s fairly standard, even for a smartphone, to have at least eight

processors and four gigabytes (four billion cells) of memory.

1.2 What Is Programming?

A program is a sequence of instructions that specifies how to perform a

computation on computer hardware. The computation might be something

mathematical, like solving a system of equations or finding the roots of a

polynomial. It could also be a symbolic computation, like searching and

replacing text in a document or (strangely enough) compiling a program.

The details look different in different languages, but a few basic instructions

appear in just about every language:

1.3 The Command-line 3

input: Get data from the keyboard, a file, a sensor, or some other device.

output: Display data on the screen, or send data to a file or other device.

math: Perform basic mathematical operations like addition and division.

decision: Check for certain conditions and execute the appropriate code.

repetition: Perform an action repeatedly, usually with some variation.

Believe it or not, that’s pretty much all there is to it. Every program you’ve

ever used, no matter how complicated, is made up of small instructions that

look much like these. So you can think of programming as the process of

breaking down a large, complex task into smaller and smaller subtasks. The

process continues until the subtasks are simple enough to be performed with

the electronic circuits provided by the hardware.

1.3 The Command-line

Before we learn how to program, we’ll first look at where we program and how

we can execute (i.e. run) our programs. In CS113, we will be writing and

running our programs exclusively from the command-line. The command-

line is an interface where we interact with a computer using just the keyboard.

Instead of clicking on icons and using our mouse, we navigate the command-

line using just our keyboard.

We will cover many useful command line commands during the first lab. We

also include a summary and list of many of these commands and more on course

website: https://cs.brynmawr.edu/cs113///website/bash-commands.html.

1.3.1 Why learn the command-line?

Learning how to program does not require learning the command-line. So

why does this course require students to work on the command-line? There

are three main reasons:

1. It helps us understand the structure of a file system

https://cs.brynmawr.edu/cs113///website/bash-commands.html

4 Chapter 1 Computer Programming

2. Any machine you use will have a command-line. Often times you can

only access a machine through the command-line, including the CS

machines.

3. Future CS class you take at BMC will assume you can navigate the

command-line.

1.3.2 Vim

We will primarily use Vim to write programs. Vim is a text editor that you

can access on almost any linux environment. We do not expect you to know

what Vim is before this course. In the first lab of the semester, you will go

through a tutorial to get comfortable using Vim.

Run “vimtutor“ from the command-line to go through the 30 minute tutorial.

1.4 The Hello World Program

Traditionally, the first program you write when learning a new programming

language is called the “Hello World” program. All it does is output the words

Hello, World! to the screen. In Java, it looks like this:

public class Hello {

public static void main(String[] args) {

// generate some simple output

System.out.println("Hello, World!");

}

}

When this program runs, it displays the following:

Hello, World!

Notice that the output does not include the quotation marks.

Java programs are made up of class and method definitions, and methods are

made up of statements. A statement is a line of code that performs a basic

1.4 The Hello World Program 5

action. In the Hello World program, this line is a print statement that

displays a message to the user:

System.out.println("Hello, World!");

System.out.println displays results on the screen; the name println stands

for “print line”. Confusingly, print can mean both “display on the screen” and

“send to the printer”. In this book, we’ll try to say “display” when we mean

output to the screen. Like most statements, the print statement ends with a

semicolon (;).

Java is “case-sensitive”, which means that uppercase and lowercase are not the

same. In the Hello World program, System has to begin with an uppercase

letter; system and SYSTEM won’t work.

A method is a named sequence of statements. This program defines one

method named main:

public static void main(String[] args)

The name and format of main is special: when the program runs, it starts at

the first statement in main and ends when it finishes the last statement. Later,

you will see programs that define more than one method.

This program defines a class named Hello. For now, a class is a collection of

methods in a single Java file; we’ll have more to say about this later. You can

give a class any name you like, but it is conventional to start with a capital

letter. The name of the class has to match the name of the file it is in, so this

class has to be in a file named Hello.java.

Java uses curly braces ({ and }) to group things together. In Hello.java, the

outermost braces contain the class definition, and the inner braces contain the

method definition.

The line that begins with two slashes (//) is a comment, which is a bit of

English text that explains the code. When Java sees //, it ignores everything

from there until the end of the line. Comments have no effect on the execution

of the program, but they make it easier for other programmers (and your future

self) to understand what you meant to do.

6 Chapter 1 Computer Programming

1.5 Compiling Java Programs

The programming language you will learn in this book is Java, which is a high-

level language. Other high-level languages you may have heard of include

Python, C and C++, PHP, Ruby, and JavaScript.

Before they can run, programs in high-level languages have to be translated

into a low-level language, also called “machine language”. This translation

takes some time, which is a small disadvantage of high-level languages. But

high-level languages have two major advantages:

� It is much easier to program in a high-level language. Programs take

less time to write, they are shorter and easier to read, and they are more

likely to be correct.

� High-level languages are portable, meaning they can run on different

kinds of computers with few or no modifications. Low-level programs

can run on only one kind of computer.

Two kinds of programs translate high-level languages into low-level languages:

interpreters and compilers. An interpreter reads a high-level program and

executes it, meaning that it does what the program says. It processes the

program a little at a time, alternately reading lines and performing computations.

Figure 1.2 shows the structure of an interpreter.

Figure 1.2: How interpreted languages are executed.

In contrast, a compiler reads the entire program and translates it completely

before the program starts running. The high-level program is called the source

code. The translated program is called the object code, or the executable.

Once a program is compiled, you can execute it repeatedly without further

translation of the source code. As a result, compiled programs often run

faster than interpreted programs.

Note that object code, as a low-level language, is not portable. You cannot

run an executable compiled for a Windows laptop on an Android phone, for

1.6 Displaying Two Messages 7

example. To run a program on different types of machines, it must be compiled

multiple times. It can be difficult to write source code that compiles and runs

correctly on different types of machines.

To address this issue, Java is both compiled and interpreted. Instead of

translating source code directly into an executable, the Java compiler generates

code for a virtual machine. This “imaginary” machine has the functionality

common to desktops, laptops, tablets, phones, etc. Its language, called Java

byte code, looks like object code and is easy and fast to interpret.

As a result, it’s possible to compile a Java program on one machine, transfer the

byte code to another machine, and run the byte code on that other machine.

Figure 1.3 shows the steps of the development process. The Java compiler is

a program named javac. It translates .java files into .class files that store the

resulting byte code. The Java interpreter is another program, named java,

which is short for “Java Virtual Machine” (JVM).

Figure 1.3: The process of compiling and running a Java program.

The programmer writes source code in the file Hello.java and uses javac to

compile it. If there are no errors, the compiler saves the byte code in the file

Hello.class. To run the program, the programmer uses java to interpret the

byte code. The result of the program is then displayed on the screen.

1.6 Displaying Two Messages

You can put as many statements as you like in the main method. For example,

to display more than one line of output:

8 Chapter 1 Computer Programming

public class Hello2 {

public static void main(String[] args) {

// generate some simple output

System.out.println("Hello, World!"); // first line

System.out.println("How are you?"); // another line

}

}

As this example also shows, you can put comments at the end of a line as well

as on lines all by themselves.

Phrases that appear in quotation marks are called strings, because they

contain a sequence of characters strung together in memory. Characters can

be letters, numbers, punctuation marks, symbols, spaces, tabs, etc.

System.out.println appends a special character, called a newline, that

moves to the beginning of the next line. If you don’t want a newline at the

end, you can use print instead of println:

public class Goodbye {

public static void main(String[] args) {

System.out.print("Goodbye, ");

System.out.println("cruel world");

}

}

In this example, the first statement does not add a newline, so the output

appears on a single line:

Goodbye, cruel world

Notice that there is a space at the end of the first string, which appears in the

output just before the word cruel.

1.7 Formatting Source Code

In Java source code, some spaces are required. For example, you need at least

one space between words, so this program is not legal:

1.7 Formatting Source Code 9

publicclassGoodbye{

publicstaticvoidmain(String[] args) {

System.out.print("Goodbye, ");

System.out.println("cruel world");

}

}

Copy the code above into a file called Goodbye.java and compile the file using

the command javac Goodby.java. What error messages do you see?

But most other spaces are optional. For example, this program is legal:

public class Goodbye {

public static void main(String[] args) {

System.out.print("Goodbye, ");

System.out.println("cruel world");

}

}

The newlines are optional, too. So we could just write this:

public class Goodbye { public static void main(String[] args)

{ System.out.print("Goodbye, "); System.out.println

("cruel world");}}

It still works, but the program is getting harder and harder to read. Newlines

and spaces are important for visually organizing your program, making it easier

to understand the program and find errors when they occur.

Many editors will automatically format source code with consistent indenting

and line breaks.

Organizations that do a lot of software development usually have strict guidelines

on how to format source code. For example, Google publishes its Java coding

standards for use in open source projects: https://google.github.io/styleguide/

javaguide.html.

You probably won’t understand these guidelines now, because they refer to

language features you haven’t yet seen. But you might want to refer to them

periodically as you read this book.

https://google.github.io/styleguide/javaguide.html
https://google.github.io/styleguide/javaguide.html

10 Chapter 1 Computer Programming

Later in the semester we will discuss how to run a command to check that your

java files obey some guidelines. Future assignments will require that your java

files obey guidelines.

1.8 Using Escape Sequences

It’s possible to display multiple lines of output with only one line of code. You

just have to tell Java where to put the line breaks:

public class Hello3 {

public static void main(String[] args) {

System.out.print("Hello!\nHow are you doing?\n");

}

}

The output is two lines, each ending with a newline character:

Hello!

How are you doing?

Each \n is an escape sequence, or two characters of source code that represent

a single character. (The backslash allows you to escape the string to write

special characters.) Notice there is no space between \n and How. If you add

a space there, there will be a space at the beginning of the second line.

\n newline

\t tab

\" double quote

\\ backslash

Table 1.1: Common escape sequences

Java has a total of eight escape sequences, and the four most commonly used

ones are listed in Table 1.1. For example, to write quotation marks inside of

strings, you need to escape them with a backslash:

1.9 What Is Computer Science? 11

System.out.println("She said \"Hello!\" to me.");

The result is as follows:

She said "Hello!" to me.

1.9 What Is Computer Science?

This book intentionally omits some details about the Java language (such

as the other escape sequences), because our main goal is teaching you how

to think like a computer scientist. Being able to understand computation is

much more valuable than just learning how to write code.

If you’re interested in learning more about Java itself, Oracle maintains an

official set of tutorials on its website (https://thinkjava.org/tutorial).

The “Language Basics” tutorial, found under “Learning the Java Language”,

is a good place to start.

One of the most interesting aspects of writing programs is deciding how to

solve a particular problem, especially when there are multiple solutions. For

example, there are numerous ways to sort a list of numbers, and each way has

its advantages. In order to determine which way is best for a given situation,

we need techniques for describing and analyzing solutions formally.

An algorithm is a sequence of steps that specifies how to solve a problem.

Some algorithms are faster than others, and some use less space in computer

memory. Computer science is the science of algorithms, including their

discovery and analysis. As you learn to develop algorithms for problems you

haven’t solved before, you will learn to think like a computer scientist.

Designing algorithms and writing code is difficult and error-prone. For historical

reasons, programming errors are called bugs, and the process of tracking them

down and correcting them is called debugging.1 As you learn to debug your

programs, you will develop new problem-solving skills. You will need to think

creatively when unexpected errors happen.

1The story goes that Grace Hopper traced down an error to a moth stuck inside a part
of a computer (https://ei.cs.vt.edu/~history/Hopper.Danis.html).

https://thinkjava.org/tutorial
https://ei.cs.vt.edu/~history/Hopper.Danis.html

12 Chapter 1 Computer Programming

Although it can be frustrating, debugging is an intellectually rich, challenging,

and interesting part of computer science. In some ways, debugging is like

detective work. You are confronted with clues, and you have to infer the

processes and events that led to the results you see. Thinking about how to

correct programs and improve their performance sometimes even leads to the

discovery of new algorithms.

1.10 Debugging Programs

It is a good idea to read this book in front of a computer so you can try out

the examples as you go. Put the code in a source file (i.e. a java) file, compile

and run the code, and see what happens. Also, try making changes to the

code and see what happens.

Whenever you are experimenting with a new feature, you should also try to

make mistakes. For example, in the Hello World program, what happens if

you leave out one of the quotation marks? What if you leave out both? What

if you spell println wrong? These kinds of experiments help you remember

what you read. They also help with debugging, because you learn what the

error messages mean. It is better to make mistakes now and on purpose than

later on and accidentally.

Debugging is like an experimental science: once you have an idea about what

is going wrong, you modify your program and try again. If your hypothesis

was correct, then you can predict the result of the modification, and you take

a step closer to a working program. If your hypothesis was wrong, you have

to come up with a new one.

Just like in science, there is no shame in your hypothesis being wrong. Testing

incorrect hypothesis is beneficial in the long run. If all of your hypotheses were

always correct, then you’d be teaching this course!

Programming and debugging should go hand in hand. Don’t just write a bunch

of code and then perform trial-and-error debugging until it all works. Instead,

start with a program that does something and make small modifications,

debugging them as you go, until the program does what you want. That

way, you will always have a working program, and isolating errors will be

easier.

1.11 Vocabulary 13

A great example of this principle is the Linux operating system, which contains

millions of lines of code. It started out as a simple program Linus Torvalds

used to explore the Intel 80386 chip. According to Larry Greenfield in The

Linux Users’ Guide, “One of Linus’s earlier projects was a program that would

switch between printing AAAA and BBBB. This later evolved to Linux.”

Finally, programming sometimes brings out strong emotions. If you are struggling

with a difficult bug, you might feel angry, despondent, or embarrassed. Remember

that you are not alone, and virtually every programmer has had similar experiences.

Don’t hesitate to reach out to a friend and ask questions!

1.11 Vocabulary

Throughout the book, we try to define each term the first time we use it. At

the end of each chapter, we include the new terms and their definitions in

order of appearance. If you spend some time learning this vocabulary, you

will have an easier time reading the following chapters.

problem solving: The process of formulating a problem, finding a solution,

and expressing the solution.

hardware: The electronic and mechanical components of a computer, such

as CPUs, RAM, and hard disks.

processor: A computer chip that performs simple instructions like basic arithmetic

and logic.

memory: Circuits that store data as long as the computer is turned on. Not

to be confused with permanent storage devices like hard disks and flash.

program: A sequence of instructions that specifies how to perform tasks on

a computer. Also known as “software”.

programming: The application of problem solving to creating executable

computer programs.

command-line: An interface for interacting with a computer by typing commands.

statement: Part of a program that specifies one step of an algorithm.

14 Chapter 1 Computer Programming

print statement: A statement that causes output to be displayed on the

screen.

method: A named sequence of statements.

class: For now, a collection of related methods. (You will see later that there

is a lot more to it.)

comment: A part of a program that contains information about the program

but has no effect when the program runs.

high-level language: A programming language that is designed to be easy

for humans to read and write.

low-level language: A programming language that is designed to be easy

for a computer to run. Also called “machine language”.

portable: The ability of a program to run on more than one kind of computer.

interpret: To run a program in a high-level language by translating it one

line at a time and immediately executing the corresponding instructions.

compile: To translate a program in a high-level language into a low-level

language, all at once, in preparation for later execution.

source code: A program in a high-level language, before being compiled.

object code: The output of the compiler, after translating the program.

executable: Another name for object code that is ready to run on specific

hardware.

virtual machine: An emulation of a real machine. The JVM enables a

computer to run Java programs.

byte code: A special kind of object code used for Java programs. Byte code

is similar to object code, but it is portable like a high-level language.

string: A sequence of characters; the primary data type for text.

newline: A special character signifying the end of a line of text. Also known

as “line ending”, “end of line” (EOL), or “line break”.

1.12 Exercises 15

escape sequence: A sequence of code that represents a special character

when used inside a string.

algorithm: A procedure or formula for solving a problem, with or without a

computer.

computer science: The scientific and practical approach to computation

and its applications.

bug: An error in a program.

debugging: The process of finding and removing errors.

1.12 Exercises

At the end of each chapter, we include exercises you can do with the things

you’ve learned. We encourage you to at least attempt every problem. You

can’t learn to program only by reading about it; you have to practice.

The code for this chapter is in the ch01 directory of ThinkJavaCode2. See

page xviii for instructions on how to download the repository. Before you

start the exercises, we recommend that you compile and run the examples.

Exercise 1.1 Computer scientists have the annoying habit of using common

English words to mean something other than their common English meanings.

For example, in English, statements and comments are the same thing, but in

programs they are different.

1. In computer jargon, what’s the difference between a statement and a

comment?

2. What does it mean to say that a program is portable?

3. In common English, what does the word compile mean?

4. What is an executable? Why is that word used as a noun?

The vocabulary section at the end of each chapter is intended to highlight

words and phrases that have special meanings in computer science. When you

see familiar words, don’t assume that you know what they mean!

16 Chapter 1 Computer Programming

Exercise 1.2 Before you do anything else, find out how to compile and run

a Java program. Some environments provide sample programs similar to the

example in Section 1.4.

1. Type in the Hello World program; then compile and run it.

2. Add a print statement that displays a second message after the Hello,

World!. Say something witty like, How are you?. Compile and run the

program again.

3. Add a comment to the program (anywhere), recompile, and run it again.

The new comment should not affect the result.

This exercise may seem trivial, but it is the starting place for many of the

programs we will work with. To debug with confidence, you will need to have

confidence in your programming environment.

In some environments, it is easy to lose track of which program is executing.

You might find yourself trying to debug one program while you are accidentally

running another. Adding (and changing) print statements is a simple way to

be sure that the program you are looking at is the program you are running.

Exercise 1.3 It is a good idea to commit as many errors as you can think

of, so that you see what error messages the compiler produces. Sometimes the

compiler tells you exactly what is wrong, and all you have to do is fix it. But

sometimes the error messages are misleading. Over time you will develop a

sense for when you can trust the compiler and when you have to figure things

out yourself.

Starting with the Hello World program, try out each of the following errors.

After you make each change, compile the program, read the error message (if

there is one), and then fix the error.

1. Remove one of the opening curly braces.

2. Remove one of the closing curly braces.

3. Instead of main, write mian.

4. Remove the word static.

1.12 Exercises 17

5. Remove the word public.

6. Remove the word System.

7. Replace println with Println.

8. Replace println with print.

9. Delete one parenthesis.

10. Add an extra parenthesis.

18 Chapter 1 Computer Programming

Chapter 2

Variables and Operators

This chapter describes how to write statements using variables, which store

values like numbers and words, and operators, which are symbols that perform

a computation. We also explain three kinds of programming errors and offer

additional debugging advice.

To run the examples in this chapter, you will need to create a new Java class

with a main method (see Section 1.4). Throughout the book, we often omit

class and method definitions to keep the examples concise.

2.1 Declaring Variables

One of the most powerful features of a programming language is the ability to

define and manipulate variables. A variable is a named location in memory

that stores a value. Values may be numbers, text, images, sounds, and other

types of data. To store a value, you first have to declare a variable:

String message;

This statement is called a declaration, because it declares that the variable

message has the type String. Each variable has a type that determines what

kind of values it can store. For example, the int type can store integers like

1 and -5, and the char type can store characters like 'A' and 'z'.

20 Chapter 2 Variables and Operators

Some types begin with a capital letter and some with lowercase. You will learn

the significance of this distinction later, but for now you should take care to

get it right. There is no such type as Int or string.

To declare an integer variable named x, you simply type this:

int x;

Note that x is an arbitrary name for the variable. In general, you should use

names that indicate what the variables mean:

String firstName;

String lastName;

int hour, minute;

This example declares two variables with type String and two with type int.

The last line shows how to declare multiple variables with the same type: hour

and minute are both integers. Note that each declaration statement ends with

a semicolon (;).

Put the following lines in a java file and try to compile the file. What error

messages does the compiler tell you about?

string firstName;

String lastName

Int hour, minute;

Variable names usually begin with a lowercase letter, in contrast to class

names (like Hello) that start with a capital letter. When a variable name

contains more than one word (like firstName), it is conventional to capitalize

the first letter of each subsequent word. We refer to this as camel case.1.

Variable names are case-sensitive, so firstName is not the same as firstname

or FirstName.

You can use any name you want for a variable. But there are about 50 reserved

words, called keywords, that you are not allowed to use as variable names.

These words include public, class, static, void, and int, which are used

by the compiler to analyze the structure of the program.

1If it isn’t clear why we call this camelCase, think of sally the camel https://www.
youtube.com/watch?v=2b1sHZXL1ac

https://www.youtube.com/watch?v=2b1sHZXL1ac
https://www.youtube.com/watch?v=2b1sHZXL1ac

2.2 Assigning Variables 21

You can see the full list of keywords (https://thinkjava.org/keywords),

but you don’t have to memorize them. Most programming editors (including

vim) provide “syntax highlighting”, which makes different parts of the program

appear in different colors. And the compiler will complain even if one does

sneak past you and your editor.

2.2 Assigning Variables

Now that we have declared some variables, we can use them to store values.

We do that with an assignment statement:

message = "Hello!"; // give message the value "Hello!"

hour = 11; // assign the value 11 to hour

minute = 59; // set minute to 59

This example shows three assignments, and the comments illustrate different

ways people sometimes talk about assignment statements. The vocabulary

can be confusing here, but the idea is straightforward:

� When you declare a variable, you create a named storage location.

� When you make an assignment to a variable, you update its value.

As a general rule, a variable has to have the same type as the value you

assign to it. For example, you cannot store a string in minute or an integer in

message. We will show some examples that seem to break this rule, but we’ll

get to that later.

A common source of confusion is that some strings look like integers, but they

are not. For example, message can contain the string "123", which is made

up of the characters '1', '2', and '3'. But that is not the same thing as the

integer 123:

message = "123"; // legal

message = 123; // not legal

Variables must be initialized (assigned for the first time) before they can

be used. You can declare a variable and then assign a value later, as in the

previous example. You can also declare and initialize on the same line:

https://thinkjava.org/keywords

22 Chapter 2 Variables and Operators

String message = "Hello!";

int hour = 11;

int minute = 59;

2.3 Memory Diagrams

Because Java uses the = symbol for assignment, it is tempting to interpret the

statement a = b as a statement of equality. It is not!

Equality is commutative, and assignment is not. For example, in mathematics

if a = 7, then 7 = a. In Java a = 7; is a legal assignment statement, but

7 = a; is not. The left side of an assignment statement has to be a variable

name (storage location).

Also, in mathematics, a statement of equality is true for all time. If a = b

now, a is always equal to b. In Java, an assignment statement can make two

variables equal, but they don’t have to stay that way:

int a = 5;

int b = a; // a and b are now equal

a = 3; // a and b are no longer equal

The third line changes the value of a, but it does not change the value of b,

so they are no longer equal.

Taken together, the variables in a program and their current values make up

the program’s state. Figure 2.1 shows the state of the program after these

assignment statements run.

5

3a

b

Figure 2.1: Memory diagram of the variables a and b.

Diagrams like this one that show the state of the program are called memory

diagrams. Each variable is represented with a box showing the name of the

variable on the outside and its current value inside.

2.4 Printing Variables 23

As the program runs, the state of memory changes, so memory diagrams show

only a particular point in time. For example, if we added the line int c = 0;

to the previous example, the memory diagram would look like Figure 2.2.

5

3a

b

0c

Figure 2.2: Memory diagram of the variables a, b, and c.

2.4 Printing Variables

You can display the current value of a variable by using print or println.

The following statements declare a variable named firstLine, assign it the

value "Hello, again!", and display that value:

String firstLine = "Hello, again!";

System.out.println(firstLine);

When we talk about displaying a variable, we generally mean the value of the

variable. To display the name of a variable, you have to put it in quotes:

System.out.print("The value of firstLine is ");

System.out.println(firstLine);

For this example, the output is as follows:

The value of firstLine is Hello, again!

Conveniently, the code for displaying a variable is the same regardless of its

type. For example:

int hour = 11;

int minute = 59;

System.out.print("The current time is ");

System.out.print(hour);

System.out.print(":");

System.out.print(minute);

System.out.println(".");

24 Chapter 2 Variables and Operators

The output of this program is shown here:

The current time is 11:59.

To output multiple values on the same line, it’s common to use several print

statements followed by println at the end. But don’t forget the println!

On many computers, the output from print is stored without being displayed

until println is run; then the entire line is displayed at once. If you omit the

println, the program might display the stored output at unexpected times or

even terminate without displaying anything.

2.5 Arithmetic Operators

Operators are symbols that represent simple computations. For example, the

addition operator is +, subtraction is -, multiplication is *, and division is /.

The following program converts a time of day to minutes:

int hour = 11;

int minute = 59;

System.out.print("Number of minutes since midnight: ");

System.out.println(hour * 60 + minute);

The output is as follows:

Number of minutes since midnight: 719

In this program, hour * 60 + minute is an expression, which represents a

single value to be computed (719). When the program runs, each variable is

replaced by its current value, and then the operators are applied. The values

that operators work with are called operands.

Expressions are generally a combination of numbers, variables, and operators.

When compiled and executed, they become a single value. For example, the

expression 1 + 1 has the value 2. In the expression hour - 1, Java replaces

the variable with its value, yielding 11 - 1, which has the value 10.

In the expression hour * 60 + minute, both variables get replaced, yielding

11 * 60 + 59. The multiplication happens first, yielding 660 + 59. Then

the addition yields 719.

2.6 Floating-Point Numbers 25

Addition, subtraction, and multiplication all do what you expect, but you

might be surprised by division. For example, the following fragment tries to

compute the fraction of an hour that has elapsed:

System.out.print("Fraction of the hour that has passed: ");

System.out.println(minute / 60);

The output is as follows:

Fraction of the hour that has passed: 0

This result often confuses people. The value of minute is 59, and 59 divided

by 60 should be 0.98333, not 0. The problem is that Java performs integer

division when the operands are integers. By design, integer division always

rounds toward zero, even in cases like this one where the next integer is close.

As an alternative, we can calculate a percentage rather than a fraction:

System.out.print("Percent of the hour that has passed: ");

System.out.println(minute * 100 / 60);

The new output is as follows:

Percent of the hour that has passed: 98

Again the result is rounded down, but at least now it’s approximately correct.

2.6 Floating-Point Numbers

A more general solution is to use floating-point numbers, which represent

values with decimal places. In Java, the default floating-point type is called

double, which is short for “double-precision”. You can create double variables

and assign values to them the same way we did for the other types:

double pi;

pi = 3.14159;

Java performs floating-point division when one or more operands are double

values. So we can solve the problem from the previous section:

26 Chapter 2 Variables and Operators

double minute = 59.0;

System.out.print("Fraction of the hour that has passed: ");

System.out.println(minute / 60.0);

The output is shown here:

Fraction of the hour that has passed: 0.9833333333333333

Although floating-point numbers are useful, they can be a source of confusion.

For example, Java distinguishes the integer value 1 from the floating-point

value 1.0, even though they seem to be the same number. They belong

to different data types, and strictly speaking, you are not allowed to make

assignments between types.

The following is illegal because the variable on the left is an int and the value

on the right is a double:

int x = 1.1; // compiler error

Copy this previous example to a java file and compile the file. What is the

error message that you see?

It is easy to forget this rule, because in many cases Java automatically converts

from one type to another:

double y = 1; // legal, but bad style

The preceding example should be illegal, but Java allows it by converting the

int value 1 to the double value 1.0 automatically. This leniency is convenient,

but it often causes problems for beginners. For example:

double y = 1 / 3; // common mistake

You might expect the variable y to get the value 0.333333, which is a legal

floating-point value. But instead it gets the value 0.0. The expression on the

right divides two integers, so Java does integer division, which yields the int

value 0. Converted to double, the value assigned to y is 0.0.

One way to solve this problem (once you figure out the bug) is to make the

right-hand side a floating-point expression. The following sets y to 0.333333,

as expected:

2.7 Rounding Errors 27

double y = 1.0 / 3.0; // correct

As a matter of style, you should always assign floating-point values to floating-

point variables. The compiler won’t make you do it, but you never know when

a simple mistake will come back and haunt you.

2.7 Rounding Errors

Most floating-point numbers are only approximately correct. Some numbers,

like reasonably sized integers, can be represented exactly. But repeating

fractions, like 1/3, and irrational numbers, like π, cannot. To represent these

numbers, computers have to round off to the nearest floating-point number.

The difference between the number we want and the floating-point number

we get is called rounding error. For example, the following two statements

should be equivalent:

System.out.println(0.1 * 10);

System.out.println(0.1 + 0.1 + 0.1 + 0.1 + 0.1

+ 0.1 + 0.1 + 0.1 + 0.1 + 0.1);

But on many machines, the output is as follows:

1.0

0.9999999999999999

The problem is that 0.1 is a repeating fraction when converted into binary. So

its floating-point representation stored in memory is only approximate. When

we add up the approximations, the rounding errors accumulate.

For many applications (like computer graphics, encryption, statistical analysis,

and multimedia rendering), floating-point arithmetic has benefits that outweigh

the costs. But if you need absolute precision, use integers instead. For example,

consider a bank account with a balance of $123.45:

double balance = 123.45; // potential rounding error

In this example, balances will become inaccurate over time as the variable is

used in arithmetic operations like deposits and withdrawals. The result would

28 Chapter 2 Variables and Operators

be angry customers and potential lawsuits. You can avoid the problem by

representing the balance as an integer:

int balance = 12345; // total number of cents

This solution works as long as the number of cents doesn’t exceed the largest

int, which is about 2 billion.

2.8 Operators for Strings

In general, you cannot perform mathematical operations on strings, even if

the strings look like numbers. The following expressions are illegal:2

"Hello" - 1 "World" / 123 "Hello" * "World"

The + operator works with strings, but it might not do what you expect. For

strings, the + operator performs concatenation, which means joining end-to-

end. So "Hello, " + "World!" yields the string "Hello, World!".

Likewise if you have a variable called name that has type String, the expression

"Hello, " + name appends the value of name to the hello string, which creates

a personalized greeting.

Since addition is defined for both numbers and strings, Java performs automatic

conversions you may not expect:

System.out.println(1 + 2 + "Hello");

// the output is 3Hello

System.out.println("Hello" + 1 + 2);

// the output is Hello12

Java executes these operations from left to right. In the first line, 1 + 2 is

3, and 3 + "Hello" is "3Hello". But in the second line, "Hello" + 1 is

"Hello1", and "Hello1" + 2 is "Hello12".

2Copy these expressions to a file and compile the file. What are the error messages that
you see?

2.9 Compiler Error Messages 29

When more than one operator appears in an expression, they are evaluated

according to the order of operations. Generally speaking, Java evaluates

operators from left to right (as you saw in the previous section). But for

numeric operators, Java follows mathematical conventions:

� Multiplication and division take “precedence” over addition and subtraction,

which means they happen first. So 1 + 2 * 3 yields 7, not 9, and

2 + 4 / 2 yields 4, not 3.

� If the operators have the same precedence, they are evaluated from left

to right. So in the expression minute * 100 / 60, the multiplication

happens first; if the value of minute is 59, we get 5900 / 60, which

yields 98. If these same operations had gone from right to left, the result

would have been 59 * 1, which is incorrect.

� Anytime you want to override the order of operations (or you are not

sure what it is) you can use parentheses. Expressions in parentheses are

evaluated first, so (1 + 2) * 3 is 9. You can also use parentheses to

make an expression easier to read, as in (minute * 100) / 60, even

though it doesn’t change the result.

See the official Java tutorials for a complete table of operator precedence

(https://thinkjava.org/operators). If the order of operations is not obvious

when looking at an expression, you can always add parentheses to make it more

clear. But over time, you should internalize these kinds of details about the

Java language.

2.9 Compiler Error Messages

Three kinds of errors can occur in a program: compile-time errors, run-time

errors, and logic errors. It is useful to distinguish among them in order to

track them down more quickly.

Compile-time errors occur when you violate the rules of the Java language.

For example, parentheses and braces have to come in matching pairs. So

(1 + 2) is legal, but 8) is not. In the latter case, the program cannot be

compiled, and the compiler displays a “syntax error”.

https://thinkjava.org/operators

30 Chapter 2 Variables and Operators

Error messages from the compiler usually indicate where in the program the

error occurred. Sometimes they can tell you exactly what the error is. As an

example, let’s get back to the Hello World program from Section 1.4:

public class Hello {

public static void main(String[] args) {

// generate some simple output

System.out.println("Hello, World!");

}

}

If you forget the semicolon at the end of the print statement, you might get

an error message like this:

File: Hello.java [line: 5]

Error: ';' expected

That’s pretty good: the location of the error (line 5) is correct, and the error

message tells you what’s wrong. But error messages are not always easy to

understand. Sometimes the compiler reports the place in the program where

the error was detected, not where it actually occurred. And sometimes the

description of the problem is more confusing than helpful.

For example, if you forget the closing brace at the end of main (line 6), you

might get a message like this:

File: Hello.java [line: 7]

Error: reached end of file while parsing

There are two problems here. First, the error message is written from the

compiler’s point of view, not yours. Parsing is the process of reading a

program before translating; if the compiler gets to the end of the file while

still parsing, that means something was omitted. But the compiler doesn’t

know what. It also doesn’t know where. The compiler discovers the error

at the end of the program (line 7), but the missing brace should be on the

previous line.

Error messages contain useful information, so you should make an effort to

read and understand them. But don’t take them too literally. During the first

2.10 Other Types of Errors 31

few weeks of your programming career, you will probably spend a lot of time

tracking down syntax and other compile-time errors. As you gain experience,

you will make fewer mistakes and find them more quickly.

2.10 Other Types of Errors

The second type of error is a run-time error, so-called because it does not

appear until after the program has started running. In Java, these errors

occur while the interpreter is executing byte code and something goes wrong.

These errors are also called “exceptions” because they usually indicate that

something unexpected has happened.

Run-time errors are rare in the simple programs you will see in the first few

chapters, so it might be a while before you encounter one. When a run-time

error occurs, the program “crashes” (terminates) and displays an error message

that explains what happened and where. For example, if you accidentally

divide by zero, you will get a message like this:

Exception in thread "main" java.lang.ArithmeticException: / by zero

at Hello.main(Hello.java:5)

Error messages are very useful for debugging. The first line includes the name

of the exception, ArithmeticException, and a message that indicates more

specifically what happened, division by zero. The next line shows the method

where the error occurred; Hello.main indicates the method main in the class

Hello. It also reports the file where the method is defined, Hello.java, and

the line number where the error occurred, 5.

The third type of error is a logic error. If your program has a logic error, it

will compile and run without generating error messages, but it will not do the

right thing. Instead, it will do exactly what you told it to do. For example,

here is a version of the Hello World program with a logic error:

public class Hello {

public static void main(String[] args) {

System.out.println("Hello, ");

System.out.println("World!");

}

}

32 Chapter 2 Variables and Operators

This program compiles and runs just fine, but the output is as follows:

Hello,

World!

Assuming that we wanted the output on one line, this is not correct. The

problem is that the first line uses println, when we probably meant to use

print (see the “Goodbye, cruel world” example of Section 1.6).

Identifying logic errors can be hard because you have to work backward,

looking at the output of the program, trying to figure out why it is doing

the wrong thing, and how to make it do the right thing. Usually, the compiler

and the interpreter can’t help you, since they don’t know what the right thing

is.

2.11 Vocabulary

variable: A named storage location for values. All variables have a type,

which is declared when the variable is created.

value: A number, string, or other data that can be stored in a variable. Every

value belongs to a type (e.g., int or String).

type: Mathematically speaking, a set of values. The type of a variable determines

which values it can have.

declaration: A statement that creates a new variable and specifies its type.

keyword: A reserved word used by the compiler to analyze programs. You

cannot use keywords (like public, class, and void) as variable names.

assignment: A statement that gives a value to a variable.

initialize: To assign a variable for the first time.

state: The variables in a program and their current values.

memory diagram: A graphical representation of the state of a program at

a point in time.

2.12 Exercises 33

operator: A symbol that represents a computation like addition, multiplication,

or string concatenation.

operand: One of the values on which an operator operates. Most operators

in Java require two operands.

expression: A combination of variables, operators, and values that represents

a single value. Expressions also have types, as determined by their

operators and operands.

floating-point: A data type that represents numbers with an integer part

and a fractional part. In Java, the default floating-point type is double.

rounding error: The difference between the number we want to represent

and the nearest floating-point number.

concatenate: To join two values, often strings, end to end.

order of operations: The rules that determine in what order expressions are

evaluated. Also known as “operator precedence”.

compile-time error: An error in the source code that makes it impossible

to compile. Also called a “syntax error”.

parse: To analyze the structure of a program; what the compiler does first.

run-time error: An error in a program that makes it impossible to run to

completion. Also called an “exception”.

logic error: An error in a program that makes it do something other than

what the programmer intended.

2.12 Exercises

The code for this chapter is in the ch02 directory of ThinkJavaCode2. See

page xviii for instructions on how to download the repository. Before you

start the exercises, we recommend that you compile and run the examples.

If you have not already read Appendix A.2, now might be a good time. It

describes the DrJava Interactions pane, which is a useful way to develop and

test short fragments of code without writing a complete class definition.

34 Chapter 2 Variables and Operators

Exercise 2.1 If you are using this book in a class, you might enjoy this

exercise. Find a partner and play Stump the Chump:

Start with a program that compiles and runs correctly. One player looks

away, while the other player adds an error to the program. Then the first

player tries to find and fix the error. You get two points if you find the error

without compiling the program, one point if you find it using the compiler,

and your opponent gets a point if you don’t find it.

Exercise 2.2 The point of this exercise is (1) to use string concatenation

to display values with different types (int and String), and (2) to practice

developing programs gradually by adding a few statements at a time.

1. Create a new program named Date.java. Copy or type in something like

the Hello World program and make sure you can compile and run it.

2. Following the example in Section 2.4, write a program that creates

variables named day, date, month, and year. The variable day will

contain the day of the week (like Friday), and date will contain the

day of the month (like the 13th). Assign values to those variables that

represent today’s date.

3. Display the value of each variable on a line by itself. This is an intermediate

step that is useful for checking that everything is working so far. Compile

and run your program before moving on.

4. Modify the program so that it displays the date in standard American

format; for example: Thursday, July 18, 2019.

5. Modify the program so it also displays the date in European format. The

final output should be as follows:

American format: Thursday, July 18, 2019

European format: Thursday 18 July 2019

Exercise 2.3 The point of this exercise is to (1) use some of the arithmetic

operators, and (2) start thinking about compound entities (like time of day)

that are represented with multiple values.

1. Create a new program called Time.java. From now on, we won’t remind

you to start with a small, working program, but you should.

2.12 Exercises 35

2. Following the example program in Section 2.4, create variables named

hour, minute, and second. Assign values that are roughly the current

time. Use a 24-hour clock so that at 2:00 PM the value of hour is 14.

3. Make the program calculate and display the number of seconds since

midnight.

4. Calculate and display the number of seconds remaining in the day.

5. Calculate and display the percentage of the day that has passed. You

might run into problems when computing percentages with integers, so

consider using floating-point.

6. Change the values of hour, minute, and second to reflect the current

time. Then write code to compute the elapsed time since you started

working on this exercise.

Hint: You might want to use additional variables to hold values during the

computation. Variables that are used in a computation but never displayed

are sometimes called “intermediate” or “temporary” variables.

36 Chapter 2 Variables and Operators

Chapter 3

Input and Output

The programs you’ve looked at so far simply display messages, which doesn’t

really involve that much computation. This chapter shows you how to read

input from the keyboard, use that input to calculate a result, and then format

that result for output.

3.1 The System Class

We have been using System.out.println for a while, but you might not

have thought about what it means. System is a class1 that provides methods

related to the “system”, or environment, where programs run. It also provides

System.out, which is a special value that has additional methods (like println)

for displaying output.

In fact, we can use System.out.println to display the value of System.out:

System.out.println(System.out);

The result is shown here:

java.io.PrintStream@685d72cd

1Remember that so far a class is a collection of related methods.

38 Chapter 3 Input and Output

This output indicates that System.out is a PrintStream, which is defined in a

package called java.io. A package is a collection of related classes; java.io

contains classes for I/O which stands for “input and output”.

The numbers and letters after the @ sign are the address of System.out,

represented as a hexadecimal (base 16) number. The address of a value is

its location in the computer’s memory, which might be different on different

computers. In this example, the address is 685d72cd, but if you run the same

code, you will likely get something else.

As shown in Figure 3.1, System is defined in a file called System.java, and

PrintStream is defined in PrintStream.java. These files are part of the Java

library, which is an extensive collection of classes that you can use in your

programs. The source code for these classes is usually included with the

compiler (see Section 11.6).

Figure 3.1: System.out.println refers to the out variable of the System

class, which is a PrintStream that provides a method called println.

3.2 The Scanner Class

The System class also provides the special value System.in, which is an

InputStream that has methods for reading input from the keyboard. These

methods are not convenient to use, but fortunately Java provides other classes

that make it easy to handle common input tasks.

3.2 The Scanner Class 39

For example, Scanner is a class that provides methods for inputting words,

numbers, and other data. Scanner is provided by java.util, which is a

package that contains various “utility classes”. Before you can use Scanner,

you have to import it like this:

import java.util.Scanner;

This import statement tells the compiler that when you refer to Scanner,

you mean the one defined in java.util. Using an import statement is necessary

because there might be another class named Scanner in another package.

Next you have to initialize the Scanner. This line declares a Scanner variable

named in and creates a Scanner that reads input from System.in:

Scanner in = new Scanner(System.in);

The Scanner class provides a method called nextLine that reads a line of

input from the keyboard and returns a String. Here’s a complete example

that reads two lines and repeats them back to the user:

import java.util.Scanner;

public class Echo {

public static void main(String[] args) {

String line;

Scanner in = new Scanner(System.in);

System.out.print("Type something: ");

line = in.nextLine();

System.out.println("You said: " + line);

System.out.print("Type something else: ");

line = in.nextLine();

System.out.println("You also said: " + line);

}

}

Import statements can’t be inside a class definition. By convention, they are

usually at the beginning of the file. If you omit the import statement, you get

40 Chapter 3 Input and Output

a compiler error like “cannot find symbol”. That means the compiler doesn’t

know where to find the definition for Scanner. In the file Echo.java, remove

the import statement, compile the file, and see if you can get this “cannot find

symbol” error message from the compiler.

You might wonder why we can use the System class without importing it.

System belongs to the java.lang package, which is imported automatically.

According to the documentation, java.lang “provides classes that are fundamental

to the design of the Java programming language.” The String class is also

part of java.lang.

3.3 Language Elements

At this point, we have seen nearly all of the organizational units that make up

Java programs. Figure 3.2 shows how these “language elements” are related.

Figure 3.2: Elements of the Java language, from largest to smallest.

Java applications are typically organized into packages (like java.io and

java.util) that include multiple classes (like PrintStream and Scanner).

Each class defines its own methods (like println and nextLine), and each

method is a sequence of statements.

Each statement performs one or more computations, depending on how many

expressions it has, and each expression represents a single value to compute.

For example, the assignment statement hours = minutes / 60.0; contains

a single expression: minutes / 60.0.

3.4 Literals and Constants 41

Tokens are the most basic elements of a program, including numbers, variable

names, operators, keywords, parentheses, braces, and semicolons. In the

previous example, the tokens are hours, =, minutes, /, 60.0, and ; (spaces

are ignored by the compiler).

Knowing this terminology is helpful, because error messages often say things

like “not a statement” or “illegal start of expression” or “unexpected token”.

Comparing Java to English, statements are complete sentences, expressions

are phrases, and tokens are individual words and punctuation marks.

Note there is a big difference between the Java language, which defines the

elements in Figure 3.2, and the Java library, which provides the built-in classes

that you can import. For example, the keywords public and class are part

of the Java language, but the names PrintStream and Scanner are not.

The standard edition of Java comes with several thousand classes you can use,

which can be both exciting and intimidating. You can browse this library

on Oracle’s website (https://thinkjava.org/apidoc). Interestingly, most

of the Java library is written in Java.

3.4 Literals and Constants

Although most of the world has adopted the metric system for weights and

measures, some countries are stuck with imperial units. For example, when

talking with friends in Europe about the weather, people in the United States

might have to convert from Celsius to Fahrenheit and back. Or they might

want to convert height in inches to centimeters.

We can write a program to help. We’ll use a Scanner to input a measurement

in inches, convert to centimeters, and then display the results. The following

lines declare the variables and create the Scanner:

int inch;

double cm;

Scanner in = new Scanner(System.in);

The next step is to prompt the user for the input. We’ll use print instead of

println so the user can enter the input on the same line as the prompt. And

https://thinkjava.org/apidoc

42 Chapter 3 Input and Output

we’ll use the Scanner method nextInt, which reads input from the keyboard

and converts it to an integer:

System.out.print("How many inches? ");

inch = in.nextInt();

Next we multiply the number of inches by 2.54, since that’s how many centimeters

there are per inch, and display the results:

cm = inch * 2.54;

System.out.print(inch + " in = ");

System.out.println(cm + " cm");

This code works correctly, but it has a minor problem. If another programmer

reads this code, they might wonder where 2.54 comes from. For the benefit of

others (and yourself in the future), it would be better to assign this value to

a variable with a meaningful name.

A value that appears in a program, like the number 2.54, is called a literal.

In general, there’s nothing wrong with literals. But when numbers like 2.54

appear in an expression with no explanation, they make the code hard to read.

And if the same value appears many times and could change in the future, it

makes the code hard to maintain.

Values like 2.54 are sometimes called magic numbers (with the implication

that being magic is not a good thing). A good practice is to assign magic

numbers to variables with meaningful names, like this:

double cmPerInch = 2.54;

cm = inch * cmPerInch;

This version is easier to read and less error-prone, but it still has a problem.

Variables can vary (hence the term), but the number of centimeters in an inch

does not. Once we assign a value to cmPerInch, it should never change. Java

provides the keyword final, a language feature that enforces this rule:

final double CM_PER_INCH = 2.54;

Declaring that a variable is final means that it cannot be reassigned once it

has been initialized. If you try, the compiler gives an error.

3.5 Formatting Output 43

Variables declared as final are called constants. By convention, names for

constants are all uppercase, with the underscore character (_) between words.

The variables are considered immutable, meaning that their values cannot

change after being initalized.

Try running the following code:

final double CM_PER_INCH = 2.54;

CM_PER_INCH = 10;

What error message do you see when trying to compile this code?

3.5 Formatting Output

When you output a double by using print or println, it displays up to 16

decimal places:

System.out.print(4.0 / 3.0);

The result is as follows:

1.3333333333333333

That might be more than you want. System.out provides another method,

called printf, that gives you more control of the format. The “f” in printf

stands for “formatted”. Here’s an example:

System.out.printf("Four thirds = %.3f", 4.0 / 3.0);

The first value in the parentheses is a format string that specifies how the

output should be displayed. This format string contains ordinary text followed

by a format specifier, which is a special sequence that starts with a percent

sign. The format specifier %.3f indicates that the following value should be

displayed as floating-point, rounded to three decimal places:

Four thirds = 1.333

The format string can contain any number of format specifiers; here’s an

example with two of them:

44 Chapter 3 Input and Output

int inch = 100;

double cm = inch * CM_PER_INCH;

System.out.printf("%d in = %f cm\n", inch, cm);

The result is as follows:

100 in = 254.000000 cm

Like print, printf does not append a newline. So format strings often end

with a newline character.

The format specifier %d displays integer values (“d” stands for “decimal”,

meaning base 10 integer). The values are matched up with the format specifiers

in order, so inch is displayed using %d, and cm is displayed using %f.

Learning about format strings is like learning a sublanguage within Java.

There are many options, and the details can be overwhelming. Table 3.1

lists a few common uses, to give you an idea of how things work.

%d Integer in base 10 (“decimal”) 12345

%,d Integer with comma separators 12,345

%08d Padded with zeros, at least 8 digits wide 00012345

%f Floating-point number 6.789000

%.2f Rounded to 2 decimal places 6.79

%s String of characters "Hello"

%x Integer in base 16 (“hexadecimal”) bc614e

Table 3.1: Example format specifiers

For more details, refer to the documentation of java.util.Formatter. The

easiest way to find documentation for Java classes is to do a web search for

“Java” and the name of the class.

3.6 Reading Error Messages

Notice that the values you pass to printf are separated by commas. If you are

used to using the + operator to concatenate strings, you might write something

like this by accident:

3.7 Type Cast Operators 45

System.out.printf("inches = %d" + inch); // error

This line of code is legal, so the compiler won’t catch the mistake. Instead,

when you run the program, it causes an exception:

Exception in thread "main" java.util.MissingFormatArgumentException:

Format specifier '%d'

at java.util.Formatter.format(Formatter.java:2519)

at java.io.PrintStream.format(PrintStream.java:970)

at java.io.PrintStream.printf(PrintStream.java:871)

at Example.main(Example.java:10)

As you saw in Section 2.10, the error message includes the name of the

exception, MissingFormatArgumentException, followed by additional details,

Format specifier ’%d’. That means it doesn’t know what value to substitute

for %d.

The problem is that concatenation happens first, before printf executes. If

the value of inch is 100, the result of concatenation is "inches = %d100". So

printf gets the format string, but it doesn’t get any values to format.

The error message also includes a stack trace that shows the method that

was running when the error was detected, java.util.Formatter.format; the

method that ran it, java.io.PrintStream.format; the method that ran that,

java.io.PrintStream.printf; and finally the method you actually wrote,

Example.main.

Each line also names the source file of the method and the line it was on

(e.g., Example.java:10). That’s a lot of information, and it includes method

names and filenames you have no reason to know at this point. But don’t be

overwhelmed.

When you see an error message like this, read the first line carefully to see what

happened. Then read the last line to see where it happened. But remember

that where the error is discovered is not always where it was caused.

3.7 Type Cast Operators

Now suppose we have a measurement in centimeters, and we want to round it

off to the nearest inch. It is tempting to write this:

46 Chapter 3 Input and Output

inch = cm / CM_PER_INCH; // syntax error

But the result is an error—you get something like, “incompatible types: possible

lossy conversion from double to int”. The problem is that the value on the

right is floating-point, and the variable on the left is an integer.

Java converts an int to a double automatically, since no information is lost

in the process. On the other hand, going from double to int would lose the

decimal places. Java doesn’t perform this operation automatically in order to

ensure that you are aware of the loss of the fractional part of the number.

The simplest way to convert a floating-point value to an integer is to use a type

cast, so called because it molds, or “casts”, a value from one type to another.

The syntax for type casting is to put the name of the type in parentheses and

use it as an operator:

double pi = 3.14159;

int x = (int) pi;

The (int) operator has the effect of converting what follows into an integer.

In this example, x gets the value 3. Like integer division, casting to an

integer always rounds toward zero, even if the fractional part is 0.999999

(or -0.999999). In other words, it simply throws away the fractional part.

In order to use a cast operator, the types must be compatible. For example,

you can’t cast a String to an int because a string is not a number:

String str = "3";

int x = (int) str; // error: incompatible types

Type casting takes precedence over arithmetic operations. In the following

example, the value of pi gets converted to an integer before the multiplication:

double pi = 3.14159;

double x = (int) pi * 20.0; // result is 60.0, not 62.0

Keeping that in mind, here’s how we can convert centimeters to inches:

inch = (int) (cm / CM_PER_INCH);

System.out.printf("%f cm = %d in\n", cm, inch);

The parentheses after the cast operator require the division to happen before

the type cast. And the result is rounded toward zero. You will see in the next

chapter how to round floating-point numbers to the closest integer.

3.8 Remainder Operator 47

3.8 Remainder Operator

Let’s take the example one step further: suppose you have a measurement in

inches and you want to convert to feet and inches. The goal is divide by 12

(the number of inches in a foot) and keep the remainder.

You have already seen the division operation (/), which computes the quotient

of two numbers. If the numbers are integers, the operation is integer division.

Java also provides the modulo operation (%), which divides two numbers and

computes the remainder.

Using division and modulo, we can convert to feet and inches like this:

feet = 76 / 12; // quotient

inches = 76 % 12; // remainder

The first line yields 6. The second line, which is pronounced “76 mod 12”,

yields 4. So 76 inches is 6 feet, 4 inches.

Many people (and textbooks) incorrectly refer to % as the “modulus operator”.

In mathematics, however, modulus is the number you’re dividing by. In the

previous example, the modulus is 12.

The Java language specification refers to % as the “remainder operator”. The

remainder operator looks like a percent sign, but you might find it helpful to

think of it as a division sign (÷) rotated to the left.

Modular arithmetic turns out to be surprisingly useful. For example, you can

check whether one number is divisible by another: if x % y is 0, then x is

divisible by y. You can use the remainder operator to “extract” digits from a

number: x % 10 yields the rightmost digit of x, and x % 100 yields the last

two digits. And many encryption algorithms use remainders extensively.

3.9 Putting It All Together

At this point, you have seen enough Java to write useful programs that solve

everyday problems. You can (1) import Java library classes, (2) create a

Scanner, (3) get input from the keyboard, (4) format output with printf,

48 Chapter 3 Input and Output

and (5) divide and mod integers. Now we will put everything together in a

complete program:

import java.util.Scanner;

/**

* Converts centimeters to feet and inches.

*/

public class Convert {

public static void main(String[] args) {

double cm;

int feet, inches, remainder;

final double CM_PER_INCH = 2.54;

final int IN_PER_FOOT = 12;

Scanner in = new Scanner(System.in);

// prompt the user and get the value

System.out.print("Exactly how many cm? ");

cm = in.nextDouble();

// convert and output the result

inches = (int) (cm / CM_PER_INCH);

feet = inches / IN_PER_FOOT;

remainder = inches % IN_PER_FOOT;

System.out.printf("%.2f cm = %d ft, %d in\n",

cm, feet, remainder);

}

}

Although not required, all variables and constants are declared at the top of

main. This practice makes it easier to find their types later on, and it helps

the reader know what data is involved in the algorithm.

For readability, each major step of the algorithm is separated by a blank line

and begins with a comment. The class also includes a documentation comment

(/**), which you can learn more about in Appendix B.

Many algorithms, including the Convert program, perform division and modulo

together. In both steps, you divide by the same number (IN_PER_FOOT).

3.10 The Scanner Bug 49

When statements including System.out.printf get long (generally wider

than 80 characters), a common style convention is to break them across multiple

lines. The reader should never have to scroll horizontally.

3.10 The Scanner Bug

Now that you’ve had some experience with Scanner, we want to warn you

about an unexpected behavior. The following code fragment asks users for

their name and age:

System.out.print("What is your name? ");

name = in.nextLine();

System.out.print("What is your age? ");

age = in.nextInt();

System.out.printf("Hello %s, age %d\n", name, age);

The output might look something like this:

Hello Grace Hopper, age 45

When you read a String followed by an int, everything works just fine. But

when you read an int followed by a String, something strange happens:

System.out.print("What is your age? ");

age = in.nextInt();

System.out.print("What is your name? ");

name = in.nextLine();

System.out.printf("Hello %s, age %d\n", name, age);

Try running this example code. It doesn’t let you input your name, and it

immediately displays the output:

What is your name? Hello , age 45

To understand what is happening, you need to realize that Scanner doesn’t

see input as multiple lines as we do. Instead, it gets a stream of characters as

shown in Figure 3.3.

50 Chapter 3 Input and Output

4 5 \n G r a c e H o p p e r \n

↑

Figure 3.3: A stream of characters as seen by a Scanner.

4 5 \n G r a c e H o p p e r \n

↑

Figure 3.4: A stream of characters after nextInt runs.

The arrow indicates the next character to be read by Scanner. When you run

nextInt, it reads characters until it gets to a non-digit. Figure 3.4 shows the

state of the stream after nextInt runs.

At this point, nextInt returns the value 45. The program then displays the

prompt "What is your name? " and runs nextLine, which reads characters

until it gets to a newline. But since the next character is already a newline,

nextLine returns the empty string "".

To solve this problem, you need an extra nextLine after nextInt:

System.out.print("What is your age? ");

age = in.nextInt();

in.nextLine(); // read the newline

System.out.print("What is your name? ");

name = in.nextLine();

System.out.printf("Hello %s, age %d\n", name, age);

This technique is common when reading int or double values that appear on

their own line. First you read the number, and then you read the rest of the

line, which is just a newline character.

3.11 Vocabulary

package: A directory of classes that are related to each other.

address: The location of a value in computer memory, often represented as

a hexadecimal integer.

3.11 Vocabulary 51

library: A collection of packages and classes that are available for use in other

programs.

import statement: A statement that allows programs to use classes defined

in other packages.

token: The smallest unit of source code, such as an individual word, literal

value, or symbol.

literal: A value that appears in source code. For example, "Hello" is a string

literal, and 74 is an integer literal.

prompt: A brief message displayed in a print statement that asks the user

for input.

magic number: A number that appears without explanation as part of an

expression. It should generally be replaced with a constant.

constant: A variable, declared as final, whose value cannot be changed.

immutable: Variables whose values cannot change after being initalized

format string: The string in System.out.printf that specifies the format

of the output.

format specifier: A special code that begins with a percent sign and specifies

the data type and format of the corresponding value.

stack trace: An error message that shows the methods that were running

when an exception occurs.

type cast: An operation that explicitly converts one data type into another.

In Java, it appears as a type name in parentheses, like (int).

modulo: An operation that yields the remainder when one integer is divided

by another. In Java, it is denoted with a percent sign: 5 % 2 is 1.

modulus: The value of b in the expression a % b. It often represents unit

conversions, such as 24 hours in a day, 60 minutes in an hour, etc.

52 Chapter 3 Input and Output

3.12 Exercises

The code for this chapter is in the ch03 directory of ThinkJavaCode2. See

page xviii for instructions on how to download the repository. Before you

start the exercises, we recommend that you compile and run the examples.

Exercise 3.1 When you use printf, the Java compiler does not check your

format string. See what happens if you try to display a value with type int

using %f. And what happens if you display a double using %d? What if you

use two format specifiers, but then provide only one value?

Exercise 3.2 Write a program that converts a temperature from Celsius to

Fahrenheit. It should (1) prompt the user for input, (2) read a double value

from the keyboard, (3) calculate the result, and (4) format the output to one

decimal place. When it’s finished, it should work like this:

Enter a temperature in Celsius: 24

24.0 C = 75.2 F

Here is the formula to do the conversion:

F = C × 9

5
+ 32

Hint: Be careful not to use integer division!

Exercise 3.3 Write a program that converts a total number of seconds to

hours, minutes, and seconds. It should (1) prompt the user for input, (2) read

an integer from the keyboard, (3) calculate the result, and (4) use printf to

display the output. For example, "5000 seconds = 1 hours, 23 minutes,

and 20 seconds".

Hint: Use the remainder operator.

Exercise 3.4 The goal of this exercise is to program a Guess My Number

game. When it’s finished, it should work like this:

3.12 Exercises 53

I'm thinking of a number between 1 and 100

(including both). Can you guess what it is?

Type a number: 45

Your guess is: 45

The number I was thinking of is: 14

You were off by: 31

To choose a random number, you can use the Random class in java.util.

Here’s how it works:

import java.util.Random;

public class GuessStarter {

public static void main(String[] args) {

// pick a random number

Random random = new Random();

int number = random.nextInt(100) + 1;

System.out.println(number);

}

}

Like the Scanner class in this chapter, Random has to be imported before we

can use it. And as with Scanner, we have to use the new operator to create a

Random (number generator).

Then we can use the method nextInt to generate a random number. In this

example, the result of nextInt(100) will be between 0 and 99, including both.

Adding 1 yields a number between 1 and 100, including both.

1. The definition of GuessStarter is in a file called GuessStarter.java, in

the directory called ch03, in the repository for this book.

2. Compile and run this program.

3. Modify the program to prompt the user; then use a Scanner to read a

line of user input. Compile and test the program.

4. Read the user input as an integer and display the result. Again, compile

and test.

54 Chapter 3 Input and Output

5. Compute and display the difference between the user’s guess and the

number that was generated.

Chapter 4

Methods and Testing

So far, we’ve written programs that have only one method, named main. In

this chapter, we’ll show you how to organize programs into multiple methods.

We’ll also take a look at the Math class, which provides methods for common

mathematical operations. Finally, we’ll discuss strategies for incrementally

developing and testing your code.

4.1 Defining New Methods

Some methods perform a computation and return a result. For example,

nextDouble reads input from the keyboard and returns it as a double. Other

methods, like println, carry out a sequence of actions without returning a

result. Java uses the keyword void to define such methods:

public static void newLine() {

System.out.println();

}

public static void main(String[] args) {

System.out.println("First line.");

newLine();

System.out.println("Second line.");

}

56 Chapter 4 Methods and Testing

In this example, the newLine and mainmethods are both public, which means

they can be invoked (or “called”) from other classes (or even the command

line for the case of main). And they are both void, which means that they

don’t return a result (in contrast to nextDouble). The output of the program

is shown here:

First line.

Second line.

Notice the extra space between the lines. If we wanted more space between

them, we could invoke the same method repeatedly. Or we could write yet

another method (named threeLine) that displays three blank lines:

public class NewLine {

public static void newLine() {

System.out.println();

}

public static void threeLine() {

newLine();

newLine();

newLine();

}

public static void main(String[] args) {

System.out.println("First line.");

threeLine();

System.out.println("Second line.");

}

}

In this example, the name of the class is NewLine. By convention, class

names begin with a capital letter. NewLine contains three methods, newLine,

threeLine, and main. Remember that Java is case-sensitive, so NewLine and

newLine are not the same.

By convention, method names begin with a lowercase letter and use “camel

case”, which is a cute name for jammingWordsTogetherLikeThis. You can

use any name you want for methods, except main or any of the Java keywords.

4.2 Flow of Execution 57

4.2 Flow of Execution

When you look at a class definition that contains several methods, it is tempting

to read it from top to bottom. But that is not the flow of execution, or the

order the program actually runs. The NewLine program runs methods in the

opposite order than they are listed.

Programs always begin at the first statement of main, regardless of where it

is in the source file.1 Statements are executed one at a time, in order, until

you reach a method invocation, which you can think of as a detour. Instead of

going to the next statement, you jump to the first line of the invoked method,

execute all the statements there, and then come back and pick up exactly

where you left off.

That sounds simple enough, but remember that one method can invoke another

one. In the middle of main, the previous example goes off to execute the

statements in threeLine. While in threeLine, it goes off to execute newLine.

Then newLine invokes println, which causes yet another detour.

Fortunately, Java is good at keeping track of which methods are running.

So when println completes, it picks up where it left off in newLine; when

newLine completes, it goes back to threeLine; and when threeLine completes,

it gets back to main.

Beginners often wonder why it’s worth the trouble to write other methods,

when they could just do everything in main. The NewLine example demonstrates

a few reasons:

� Creating a new method allows you to name a block of statements, which

makes the code easier to read and understand.

� Introducing new methods can make the program shorter by eliminating

repetitive code. For example, to display nine consecutive newlines, you

could invoke threeLine three times.

� A common problem-solving technique is to break problems down into

subproblems. Methods allow you to focus on each subproblem in isolation,

and then compose them into a complete solution.

1Though by convention we put the main method as the last method in our source file.

58 Chapter 4 Methods and Testing

Perhaps most importantly, organizing your code into multiple methods allows

you to test individual parts of your program separately. It’s easier to get a

complex program working if you know that each method works correctly.

4.3 Parameters and Arguments

Some of the methods we have used require arguments, which are the values

you provide in parentheses when you invoke the method.

For example, the println method takes a String argument. To display a

message, you have to provide the message: System.out.println("Hello").

Similarly, the printf method can take multiple arguments. The statement

System.out.printf("%d in = %f cm\n", inch, cm) has three arguments:

the format string, the inch value, and the cm value.

When you invoke a method, you provide the arguments. When you define a

method, you name the parameters, which are variables that indicate what

arguments are required. The following class shows an example:

public class PrintTwice {

public static void printTwice(String s) {

System.out.println(s);

System.out.println(s);

}

public static void main(String[] args) {

printTwice("Don't make me say this twice!");

}

}

The printTwice method has a parameter named s with type String. When

you invoke printTwice, you have to provide an argument with type String.

Before the method executes, the argument gets assigned to the parameter. In

the printTwice example, the argument "Don't make me say this twice!"

gets assigned to the parameter s.

4.3 Parameters and Arguments 59

This process is called parameter passing, because the value gets passed from

outside the method to the inside. An argument can be any kind of expression,

so if you have a String variable, you can use its value as an argument:

String message = "Never say never.";

printTwice(message);

The value you provide as an argument must have the same (or compatible)

type as the parameter. For example, if you try this:

printTwice(17); // syntax error

You will get an error message like this:

File: Test.java [line: 10]

Error: method printTwice in class Test cannot be applied

to given types;

required: java.lang.String

found: int

reason: actual argument int cannot be converted to

java.lang.String by method invocation conversion

This error message says that it found an int argument, but the required

parameter should be a String. In the case of printTwice, Java won’t convert

the integer 17 to the string "17" automatically.

Sometimes Java can convert an argument from one type to another automatically.

For example, Math.sqrt requires a double, but if you invoke Math.sqrt(25),

the integer value 25 is automatically converted to the floating-point value 25.0.

Parameters and other variables exist only inside their own methods. In the

printTwice example, there is no such thing as s in the main method. If you

try to use it there, you’ll get a compiler error.

Similarly, inside printTwice there is no such thing as message. That variable

belongs to main. Because variables exist only inside the methods where they

are defined, they are often called local variables.

60 Chapter 4 Methods and Testing

4.4 Multiple Parameters

Here is an example of a method that takes two parameters:

public static void printTime(int hour, int minute) {

System.out.print(hour);

System.out.print(":");

System.out.println(minute);

}

To invoke this method, we have to provide two integers as arguments:

int hour = 11;

int minute = 59;

printTime(hour, minute);

Beginners sometimes make the mistake of declaring the arguments:

int hour = 11;

int minute = 59;

printTime(int hour, int minute); // syntax error

That’s a syntax error, because the compiler sees int hour and int minute

as variable declarations, not expressions that represent values. You wouldn’t

declare the types of the arguments if they were simply integers:

printTime(int 11, int 59); // syntax error

Pulling together the code fragments, here is the complete program:

4.5 Stack Diagrams 61

public class PrintTime {

public static void printTime(int hour, int minute) {

System.out.print(hour);

System.out.print(":");

System.out.println(minute);

}

public static void main(String[] args) {

int hour = 11;

int minute = 59;

printTime(hour, minute);

}

}

printTime has two parameters, named hour and minute. And main has two

variables, also named hour and minute. Although they have the same names,

these variables are not the same. The hour in printTime and the hour in

main refer to different memory locations, and they can have different values.

For example, you could invoke printTime like this:

int hour = 11;

int minute = 59;

printTime(hour + 1, 0);

Before the method is invoked, Java evaluates the arguments; in this example,

the results are 12 and 0. Then it assigns those values to the parameters. Inside

printTime, the value of hour is 12, not 11, and the value of minute is 0, not

59. Furthermore, if printTime modifies one of its parameters, that change

has no effect on the variables in main.

4.5 Stack Diagrams

One way to keep track of variables is to draw a stack diagram, which is

a memory diagram (see Section 2.3) that shows currently running methods.

For each method there is a box, called a frame, that contains the method’s

62 Chapter 4 Methods and Testing

parameters and local variables. The name of the method appears outside the

frame; the variables and parameters appear inside.

As with memory diagrams, stack diagrams show variables and methods at a

particular point in time. Figure 4.1 is a stack diagram at the beginning of the

printTime method. Notice that main is on top, because it executed first.

11hour

12hour

main

printTime

59minute

minute 0

Figure 4.1: Stack diagram for printTime(hour + 1, 0).

Stack diagrams help you to visualize the scope of a variable, which is the area

of a program where a variable can be used.

Stack diagrams are a good mental model for how variables and methods work

at run-time. Learning to trace the execution of a program on paper (or on a

whiteboard) is a useful skill for communicating with other programmers.

Educational tools can automatically draw stack diagrams for you. For example,

Java Tutor (https://thinkjava.org/javatutor) allows you to step through

an entire program, both forward and backward, and see the stack frames and

variables at each step. If you haven’t already, you should check out the Java

examples on that website.

4.6 Math Methods

You don’t always have to write new methods to get work done. As a reminder,

the Java library contains thousands of classes you can use. For example, the

Math class provides common mathematical operations:

double root = Math.sqrt(17.0);

double angle = 1.5;

double height = Math.sin(angle);

The first line sets root to the square root of 17. The third line finds the sine

of 1.5 (the value of angle). Math is in the java.lang package, so you don’t

have to import it.

https://thinkjava.org/javatutor

4.7 Composition 63

Values for the trigonometric functions—sin, cos, and tan—must be in radians.

To convert from degrees to radians, you divide by 180 and multiply by π.

Conveniently, the Math class provides a constant named PI that contains an

approximation of π:

double degrees = 90;

double angle = degrees / 180.0 * Math.PI;

Notice that PI is in capital letters. Java does not recognize Pi, pi, or pie. Also,

PI is the name of a constant, not a method, so it doesn’t have parentheses.

The same is true for the constant Math.E, which approximates Euler’s number.

Converting to and from radians is a common operation, so the Math class

provides methods that do that for you:

double radians = Math.toRadians(180.0);

double degrees = Math.toDegrees(Math.PI);

Another useful method is round, which rounds a floating-point value to the

nearest integer and returns a long. The following result is 63 (rounded up

from 62.8319):

long x = Math.round(Math.PI * 20.0);

A long is like an int, but bigger. More specifically, an int uses 32 bits of

memory; the largest value it can hold is 231 − 1, which is about 2 billion. A

long uses 64 bits, so the largest value is 263 − 1, which is about 9 quintillion.

Take a minute to read the documentation for these and other methods in the

Math class. The easiest way to find documentation for Java classes is to do a

web search for “Java” and the name of the class.

4.7 Composition

You have probably learned how to evaluate simple expressions like sin(π/2)

and log(1/x). First, you evaluate the expression in parentheses, which is the

argument of the function. Then you can evaluate the function itself, either by

hand or by punching it into a calculator.

64 Chapter 4 Methods and Testing

This process can be applied repeatedly to evaluate more-complex expressions

like log(1/ sin(π/2)). First we evaluate the argument of the innermost function

(π/2 = 1.57), then evaluate the function itself (sin(1.57) = 1.0), and so on.

Just as with mathematical functions, Java methods can be composed to solve

complex problems. That means you can use one method as part of another.

In fact, you can use any expression as an argument to a method, as long as

the resulting value has the correct type:

double x = Math.cos(angle + Math.PI / 2.0);

This statement divides Math.PI by 2.0, adds the result to angle, and computes

the cosine of the sum. You can also take the result of one method and pass it

as an argument to another:

double x = Math.exp(Math.log(10.0));

In Java, the log method always uses base e. So this statement finds the log

base e of 10, and then raises e to that power. The result gets assigned to x.

Some math methods take more than one argument. For example, Math.pow

takes two arguments and raises the first to the power of the second. This line

computes 210 and assigns the value 1024.0 to the variable x:

double x = Math.pow(2.0, 10.0);

When using Mathmethods, beginners often forget the word Math. For example,

if you just write x = pow(2.0, 10.0), you will get a compiler error:

File: Test.java [line: 5]

Error: cannot find symbol

symbol: method pow(double,double)

location: class Test

The message “cannot find symbol” is confusing, but the last two lines provide

a useful hint. The compiler is looking for a method named pow in the file

Test.java (the file for this example). If you don’t specify a class name when

referring to a method, the compiler looks in the current class by default.

4.8 Return Values 65

4.8 Return Values

When you invoke a void method, the invocation is usually on a line all by

itself. For example:

printTime(hour + 1, 0);

On the other hand, when you invoke a value-returning method, you have to

do something with the return value. We usually assign it to a variable or use

it as part of an expression, like this:

double error = Math.abs(expect - actual);

double height = radius * Math.sin(angle);

Compared to void methods, value-returning methods differ in two ways:

� They declare the type of the return value (the return type).

� They use at least one return statement to provide a return value.

Here’s an example from a program named Circle.java. The calculateArea

method takes a double as a parameter and returns the area of a circle with

that radius (i.e., πr2):

public static double calculateArea(double radius) {

double result = Math.PI * radius * radius;

return result;

}

As usual, this method is public and static. But in the place where we are

used to seeing void, we see double, which means that the return value from

this method is a double.

The last line is a new form of the return statement that means, “Return

immediately from this method, and use the following expression as the return

value.” The expression you provide can be arbitrarily complex, so we could

have written this method more concisely:

public static double calculateArea(double radius) {

return Math.PI * radius * radius;

}

66 Chapter 4 Methods and Testing

On the other hand, temporary variables like result often make debugging

easier, especially when you are stepping through code by using an interactive

debugger (see Appendix A.6).

Figure 4.2 illustrates how data values flows through the program. When

the main method invokes calculateArea, the value 5.0 is assigned to the

parameter radius. calculateArea then returns the value 78.54, which is

assigned to the variable area.

Figure 4.2: Passing a parameter and saving the return value.

The type of the expression in the return statement must match the return

type of the method itself. When you declare that the return type is double,

you are making a promise that this method will eventually produce a double

value. If you try to return with no expression, or return an expression with

the wrong type, the compiler will give an error.

4.9 Incremental Development

People often make the mistake of writing a lot of code before they try to

compile and run it. Then they spend way too much time debugging. A better

approach is incremental development. Its key aspects are as follows:

� Start with a working program and make small, incremental changes. At

any point, if there is an error, you will know where to look.

4.9 Incremental Development 67

� Use variables to hold intermediate values so you can check them, either

with print statements or by using a debugger.

� Once the program is working, you can consolidate multiple statements

into compound expressions (but only if it does not make the program

more difficult to read).

As an example, suppose you want to find the distance between two points,

given by the coordinates (x1, y1) and (x2, y2). By the usual definition:

distance =
√

(x2 − x1)2 + (y2 − y1)2

The first step is to consider what a distance method should look like in Java.

In other words, what are the inputs (parameters) and what is the output

(return value)? For this method, the parameters are the two points, and it is

natural to represent them using four double values. The return value is the

distance, which should also have type double.

Already we can write an outline for the method, which is sometimes called a

stub. The stub includes the method declaration and a return statement:

public static double distance

(double x1, double y1, double x2, double y2) {

return 0.0; // stub

}

The return statement is a placeholder that is necessary only for the program

to compile. At this stage, the program doesn’t do anything useful, but it is

good to compile it so we can find any syntax errors before we add more code.

It’s usually a good idea to think about testing before you develop new methods;

doing so can help you figure out how to implement them. To test the method,

we can invoke it from main by using the sample values:

double dist = distance(1.0, 2.0, 4.0, 6.0);

With these values, the horizontal distance is 3.0 and the vertical distance is

4.0. So the result should be 5.0, the hypotenuse of a 3-4-5 triangle. When you

are testing a method, it is necessary to know the right answer.

68 Chapter 4 Methods and Testing

Once we have compiled the stub, we can start adding code one line at a time.

After each incremental change, we recompile and run the program. If there is

an error, we have a good idea of where to look: the lines we just added.

The next step is to find the differences, x2 − x1 and y2 − y1. We store those

values in temporary variables named dx and dy, so that we can examine them

with print statements before proceeding. They should be 3.0 and 4.0:

public static double distance

(double x1, double y1, double x2, double y2) {

double dx = x2 - x1;

double dy = y2 - y1;

System.out.println("dx is " + dx);

System.out.println("dy is " + dy);

return 0.0; // stub

}

We will remove the print statements when the method is finished. Code like

that is called scaffolding, because it is helpful for building the program but

is not part of the final product.

The next step is to square dx and dy. We could use the Math.pow method,

but it is simpler (and more efficient) to multiply each term by itself. Then we

add the squares and print the result so far:

public static double distance

(double x1, double y1, double x2, double y2) {

double dx = x2 - x1;

double dy = y2 - y1;

double dsquared = dx * dx + dy * dy;

System.out.println("dsquared is " + dsquared);

return 0.0; // stub

}

Again, you should compile and run the program at this stage and check the

intermediate value, which should be 25.0. Finally, we can use Math.sqrt to

compute and return the result:

4.10 Vocabulary 69

public static double distance

(double x1, double y1, double x2, double y2) {

double dx = x2 - x1;

double dy = y2 - y1;

double dsquared = dx * dx + dy * dy;

double result = Math.sqrt(dsquared);

return result;

}

As you gain more experience programming, you might write and debug more

than one line at a time. But if you find yourself spending a lot of time

debugging, consider taking smaller steps.

4.10 Vocabulary

void: A special return type indicating the method does not return a value.

invoke: To cause a method to execute. Also known as “calling” a method.

flow of execution: The order in which Java executes methods and statements.

It may not necessarily be from top to bottom in the source file.

argument: A value that you provide when you call a method. This value

must have the type that the method expects.

parameter: A piece of information that a method requires before it can run.

Parameters are variables: they contain values and have types.

parameter passing: The process of assigning an argument value to a parameter

variable.

local variable: A variable declared inside a method. Local variables cannot

be accessed from outside their method.

stack diagram: A graphical representation of the variables belonging to each

method. The method calls are “stacked” from top to bottom, in the flow

of execution.

frame: In a stack diagram, a representation of the variables and parameters

for a method, along with their current values.

70 Chapter 4 Methods and Testing

scope: The area of a program where a variable can be used.

composition: The ability to combine simple expressions and statements into

compound expressions and statements.

return type: The type of value a method returns.

return value: The value provided as the result of a method invocation.

temporary variable: A short-lived variable, often used for debugging.

incremental development: A process for creating programs by writing a

few lines at a time, compiling, and testing.

stub: A placeholder for an incomplete method so that the class will compile.

scaffolding: Code that is used during program development but is not part

of the final version.

4.11 Exercises

The code for this chapter is in the ch04 directory of ThinkJavaCode2. See

page xviii for instructions on how to download the repository. Before you

start the exercises, we recommend that you compile and run the examples.

If you have not already read Appendix A.4, now might be a good time. It

describes an efficient way to test programs that take input from the user and

display specific output.

Exercise 4.1 The purpose of this exercise is to take code from a previous

exercise and redesign it as a method that takes parameters. Start with a

working solution to Exercise 2.2.

1. Write a method called printAmerican that takes the day, date, month,

and year as parameters and displays them in American format.

2. Test your method by invoking it from main and passing appropriate

arguments. The output should look something like this (except the date

might be different):

Monday, July 22, 2019

4.11 Exercises 71

3. Once you have debugged printAmerican, write another method called

printEuropean that displays the date in European format.

Exercise 4.2 This exercise reviews the flow of execution through a program

with multiple methods. Read the following code and answer the questions:

public static void main(String[] args) {

zippo("rattle", 13);

}

public static void baffle(String blimp) {

System.out.println(blimp);

zippo("ping", -5);

}

public static void zippo(String quince, int flag) {

if (flag < 0) {

System.out.println(quince + " zoop");

} else {

System.out.println("ik");

baffle(quince);

System.out.println("boo-wa-ha-ha");

}

}

1. Write the number 1 next to the first line of code in this program that

will execute.

2. Write the number 2 next to the second line of code, and so on until the

end of the program. If a line is executed more than once, it might end

up with more than one number next to it.

3. What is the value of the parameter blimp when baffle gets invoked?

4. What is the output of this program?

Exercise 4.3 Answer the following questions without running the program

on a computer.

1. Draw a stack diagram that shows the state of the program the first time

ping is invoked.

72 Chapter 4 Methods and Testing

2. What is output by the following program? Be precise about the placement

of spaces and newlines.

public static void zoop() {

baffle();

System.out.print("You wugga ");

baffle();

}

public static void main(String[] args) {

System.out.print("No, I ");

zoop();

System.out.print("I ");

baffle();

}

public static void baffle() {

System.out.print("wug");

ping();

}

public static void ping() {

System.out.println(".");

}

Exercise 4.4 If you have a question about whether something is legal, and

what happens if it is not, a good way to find out is to ask the compiler. Answer

the following questions by trying them out.

1. What happens if you invoke a value method and don’t do anything with

the result; that is, if you don’t assign it to a variable or use it as part of

a larger expression?

2. What happens if you use a void method as part of an expression? For

example, try System.out.println("boo!") + 7;.

Exercise 4.5 Draw a stack diagram that shows the state of the program the

second time zoop is invoked. What is the complete output?

4.11 Exercises 73

public static void zoop(String fred, int bob) {

System.out.println(fred);

if (bob == 5) {

ping("not ");

} else {

System.out.println("!");

}

}

public static void main(String[] args) {

int bizz = 5;

int buzz = 2;

zoop("just for", bizz);

clink(2 * buzz);

}

public static void clink(int fork) {

System.out.print("It's ");

zoop("breakfast ", fork);

}

public static void ping(String strangStrung) {

System.out.println("any " + strangStrung + "more ");

}

Exercise 4.6 Many computations can be expressed more concisely using the

“multadd” operation, which takes three operands and computes a * b + c.

Some processors even provide a hardware implementation of this operation for

floating-point numbers.

1. Create a new program called Multadd.java.

2. Write a method called multadd that takes three doubles as parameters

and returns a * b + c.

3. Write a main method that tests multadd by invoking it with a few simple

parameters, like 1.0, 2.0, 3.0.

4. Also in main, use multadd to compute the following values:

sin π
4
+

cos π
4

2

log 10 + log 20

74 Chapter 4 Methods and Testing

5. Write a method called expSum that takes a double as a parameter and

uses multadd to calculate:

xe−x +
√
1− e−x

Hint: The method for raising e to a power is Math.exp.

In the last part of this exercise, you need to write a method that invokes

another method you wrote. Whenever you do that, it is a good idea to test

the first method carefully before working on the second. Otherwise, you might

find yourself debugging two methods at the same time, which can be difficult.

One of the purposes of this exercise is to practice pattern-matching: the ability

to recognize a specific problem as an instance of a general category of problems.

Chapter 5

Conditionals and Logic

The programs in the previous chapters do the same thing every time they

are run, regardless of the input. For more-complex computations, programs

usually react to inputs, check for certain conditions, and generate applicable

results. This chapter introduces Java language features for expressing logic

and making decisions.

5.1 Relational Operators

Java has six relational operators that test the relationship between two

values (e.g., whether they are equal, or whether one is greater than the other).

The following expressions show how they are used:

x == y // x is equal to y

x != y // x is not equal to y

x > y // x is greater than y

x < y // x is less than y

x >= y // x is greater than or equal to y

x <= y // x is less than or equal to y

The result of a relational operator is one of two special values: true or false.

These values belong to the data type boolean, named after the mathematician

George Boole. He developed an algebraic way of representing logic.

76 Chapter 5 Conditionals and Logic

You are probably familiar with these operators, but notice how Java is different

from mathematical symbols like =, ̸=, and ≥. A common error is to use a

single = instead of a double == when comparing values. Remember that = is

the assignment operator, and == is a relational operator. Also, the operators

=< and => do not exist.

The two sides of a relational operator have to be compatible. For example, the

expression 5 < "6" is invalid because 5 is an int and "6" is a String. When

comparing values of different numeric types, Java applies the same conversion

rules you saw previously with the assignment operator. For example, when

evaluating the expression 5 < 6.0, Java automatically converts the 5 to 5.0.

5.2 The if-else Statement

To write useful programs, we almost always need to check conditions and

react accordingly. Conditional statements give us this ability. The simplest

conditional statement in Java is the if statement:

if (x > 0) {

System.out.println("x is positive");

}

The expression in parentheses is called the condition. If it is true, the statements

in braces get executed. If the condition is false, execution skips over that block

of code. The condition in parentheses can be any boolean expression.

A second form of conditional statement has two possibilities, indicated by if

and else. The possibilities are called branches, and the condition determines

which branch gets executed:

if (x % 2 == 0) {

System.out.println("x is even");

} else {

System.out.println("x is odd");

}

If the remainder when x is divided by 2 is 0, we know that x is even, and the

program displays a message to that effect. If the condition is false, the second

5.2 The if-else Statement 77

print statement is executed instead. Since the condition must be true or false,

exactly one of the branches will run.

The braces are optional for branches that have only one statement. So we

could have written the previous example this way:

if (x % 2 == 0)

System.out.println("x is even");

else

System.out.println("x is odd");

However, it’s better to use braces—even when they are optional—to avoid

making the mistake of adding statements to a one-line if or else block. This

code is misleading because it’s not indented correctly:

if (x > 0)

System.out.println("x is positive");

System.out.println("x is not zero");

Since there are no braces, only the first println is part of the if statement.

Here is what the compiler actually sees:

if (x > 0) {

System.out.println("x is positive");

}

System.out.println("x is not zero");

As a result, the second println runs no matter what. Even experienced

programmers make this mistake; search the web for Apple’s “goto fail” bug.

In all previous examples, notice that there is no semicolon at the end of the if

or else lines. Instead, a new block should be defined using braces. Another

common mistake is to put a semicolon after the condition, like this:

int x = 1;

if (x % 2 == 0); { // incorrect semicolon

System.out.println("x is even");

}

This code will compile, but the program will output "x is even" regardless

of the value of x. Here is the same incorrect code with better formatting:

78 Chapter 5 Conditionals and Logic

int x = 1;

if (x % 2 == 0)

; // empty statement

{

System.out.println("x is even");

}

Because of the semicolon, the if statement compiles as if there are no braces,

and the subsequent block runs independently. As a general rule, each line of

Java code should end with a semicolon or brace—but not both.

The compiler won’t complain if you omit optional braces or write empty

statements. Doing so is allowed by the Java language, but it often results

in bugs that are difficult to find. Development tools like Checkstyle (see

Appendix A.5) can warn you about these and other kinds of programming

mistakes.

5.3 Chaining and Nesting

Sometimes you want to check related conditions and choose one of several

actions. One way to do this is by chaining a series of if and else blocks:

if (x > 0) {

System.out.println("x is positive");

} else if (x < 0) {

System.out.println("x is negative");

} else {

System.out.println("x is zero");

}

These chains can be as long as you want, although they can be difficult to

read if they get out of hand. One way to make them easier to read is to use

standard indentation, as demonstrated in these examples. If you keep all the

statements and braces lined up, you are less likely to make syntax errors.

Notice that the last branch is simply else, not else if (x == 0). At this

point in the chain, we know that x is not positive and x is not negative. There

is no need to test whether x is 0, because there is no other possibility.

5.4 The switch Statement 79

In addition to chaining, you can also make complex decisions by nesting one

conditional statement inside another. We could have written the previous

example as follows:

if (x > 0) {

System.out.println("x is positive");

} else {

if (x < 0) {

System.out.println("x is negative");

} else {

System.out.println("x is zero");

}

}

The outer conditional has two branches. The first branch contains a print

statement, and the second branch contains another conditional statement,

which has two branches of its own. These two branches are also print statements,

but they could have been conditional statements as well.

These kinds of nested structures are common, but they can become difficult

to read very quickly. Good indentation is essential to make the structure (or

intended structure) apparent to the reader.

5.4 The switch Statement

If you need to make a series of decisions, chaining else if blocks can get long

and redundant. For example, consider a program that converts integers like

1, 2, and 3 into words like "one", "two", and "three":

if (number == 1) {

word = "one";

} else if (number == 2) {

word = "two";

} else if (number == 3) {

word = "three";

} else {

word = "unknown";

}

80 Chapter 5 Conditionals and Logic

This chain could go on and on, especially for banking programs that write

numbers in long form (e.g., “one hundred twenty-three and 45/100 dollars”).

An alternative way to evaluate many possible values of an expression is to use

a switch statement:

switch (number) {

case 1:

word = "one";

break;

case 2:

word = "two";

break;

case 3:

word = "three";

break;

default:

word = "unknown";

break;

}

The body of a switch statement is organized into one or more case blocks.

Each case ends with a break statement, which exits the switch body. The

default block is optional and executed only if none of the cases apply.

Although switch statements appear longer than chained else if blocks, they

are particularly useful when multiple cases can be grouped:

switch (food) {

case "apple":

case "banana":

case "cherry":

System.out.println("Fruit!");

break;

case "asparagus":

case "broccoli":

case "carrot":

System.out.println("Vegetable!");

break;

}

5.5 Logical Operators 81

5.5 Logical Operators

In addition to the relational operators, Java also has three logical operators:

&&, ||, and !, which respectively stand for and, or, and not. The results of

these operators are similar to their meanings in English. For example:

� x > 0 && x < 10 is true when x is greater than 0 and less than 10.

� x < 0 || x > 10 is true if either condition is true; that is, if x is less

than 0 or greater than 10.

� !(x > 0) is true if x is not greater than 0. The parentheses are necessary

in this example because, in the order of operations, ! comes before >.

In order for an expression with && to be true, both sides of the && operator

must be true. And in order for an expression with || to be false, both sides

of the || operator must be false.

The && operator can be used to simplify nested if statements. For example,

the following code can be rewritten with a single condition:

if (x == 0) {

if (y == 0) {

System.out.println("Both x and y are zero");

}

}

// combined

if (x == 0 && y == 0) {

System.out.println("Both x and y are zero");

}

Likewise, the || operator can simplify chained if statements. Since the

branches are the same, there is no need to duplicate that code:

if (x == 0) {

System.out.println("Either x or y is zero");

} else if (y == 0) {

System.out.println("Either x or y is zero");

}

82 Chapter 5 Conditionals and Logic

// combined

if (x == 0 || y == 0) {

System.out.println("Either x or y is zero");

}

Then again, if the statements in the branches were different, we could not

combine them into one block. But it’s useful to explore different ways of

representing the same logic, especially when it’s complex.

Logical operators evaluate the second expression only when necessary. For

example, true || anything is always true, so Java does not need to evaluate

the expression anything. Likewise, false && anything is always false.

Ignoring the second operand, when possible, is called short-circuit evaluation,

by analogy with an electrical circuit. Short-circuit evaluation can save time,

especially if anything takes a long time to evaluate. It can also avoid unnecessary

errors, if anything might fail.

5.6 De Morgan’s Laws

Sometimes you need to negate an expression containing a mix of relational

and logical operators. For example, to test if x and y are both nonzero, you

could write the following:

if (!(x == 0 || y == 0)) {

System.out.println("Neither x nor y is zero");

}

This condition is difficult to read because of the ! and parentheses. A better

way to negate logic expressions is to apply De Morgan’s laws:

� !(A && B) is the same as !A || !B

� !(A || B) is the same as !A && !B

In words, negating a logical expression is the same as negating each term and

changing the operator. The ! operator takes precedence over && and ||, so

you don’t have to put parentheses around the individual terms !A and !B.

De Morgan’s laws also apply to the relational operators. In this case, negating

each term means using the “opposite” relational operator:

5.7 Boolean Variables 83

� !(x < 5 && y == 3) is the same as x >= 5 || y != 3

� !(x >= 1 || y != 7) is the same as x < 1 && y == 7

It may help to read these examples out loud in English. For instance, “If I

don’t want the case where x is less than 5 and y is 3, then I need x to be

greater than or equal to 5, or I need y to be anything but 3.”

Returning to the previous example, here is the revised condition. In English,

it reads, “If x is not zero and y is not zero.” The logic is the same, and the

source code is easier to read:

if (x != 0 && y != 0) {

System.out.println("Neither x nor y is zero");

}

5.7 Boolean Variables

To store a true or false value, you need a boolean variable. You can declare

and assign them like other variables. In this example, the first line is a variable

declaration, the second is an assignment, and the third is both:

boolean flag;

flag = true;

boolean testResult = false;

Since relational and logical operators evaluate to a boolean value, you can

store the result of a comparison in a variable:

boolean evenFlag = (x % 2 == 0); // true if x is even

boolean positiveFlag = (x > 0); // true if x is positive

The parentheses are unnecessary, but they make the code easier to understand.

A variable defined in this way is called a flag, because it signals, or “flags”,

the presence or absence of a condition.

You can use flag variables as part of a conditional statement:

if (evenFlag) {

System.out.println("n was even when I checked it");

}

84 Chapter 5 Conditionals and Logic

Flags may not seem that useful at this point, but they will help simplify

complex conditions later. Each part of a condition can be stored in a separate

flag, and these flags can be combined with logical operators.

Notice that we didn’t have to write if (evenFlag == true). Since evenFlag

is a boolean, it’s already a condition. To check if a flag is false, we simply

negate the flag:

if (!evenFlag) {

System.out.println("n was odd when I checked it");

}

In general, you should never compare anything to true or false. Doing so

makes the code more verbose and awkward to read out loud.

5.8 Boolean Methods

Methods can return boolean values, just like any other type, which is often

convenient for hiding tests inside methods. For example:

public static boolean isSingleDigit(int x) {

if (x > -10 && x < 10) {

return true;

} else {

return false;

}

}

The name of this method is isSingleDigit. It is common to give boolean

methods names that sound like yes/no questions. Since the return type is

boolean, the return statement has to provide a boolean expression.

The code itself is straightforward, although it is longer than it needs to be.

Remember that the expression x > -10 && x < 10 has type boolean, so there

is nothing wrong with returning it directly (without the if statement):

public static boolean isSingleDigit(int x) {

return x > -10 && x < 10;

}

5.9 Validating Input 85

In main, you can invoke the method in the usual ways:

System.out.println(isSingleDigit(2));

boolean bigFlag = !isSingleDigit(17);

The first line displays true because 2 is a single-digit number. The second

line sets bigFlag to true, because 17 is not a single-digit number.

Conditional statements often invoke boolean methods and use the result as

the condition:

if (isSingleDigit(z)) {

System.out.println("z is small");

} else {

System.out.println("z is big");

}

Examples like this one almost read like English: “If is single digit z, print z is

small else print z is big.”

5.9 Validating Input

One of the most important tasks in any computer program is to validate

input from the user. People often make mistakes while typing, especially on

smartphones, and incorrect inputs may cause your program to fail.

Even worse, someone (i.e., a hacker) may intentionally try to break into your

system by entering unexpected inputs. You should never assume that users

will input the right kind of data.

Consider this simple program that prompts the user for a number and computes

its logarithm:

Scanner in = new Scanner(System.in);

System.out.print("Enter a number: ");

double x = in.nextDouble();

double y = Math.log(x);

System.out.println("The log is " + y);

86 Chapter 5 Conditionals and Logic

In mathematics, the natural logarithm (base e) is undefined when x ≤ 0. In

Java, if you ask for Math.log(-1), it returns NaN, which stands for “not a

number”. We can check for this condition and print an appropriate message:

if (x > 0) {

double y = Math.log(x);

System.out.println("The log is " + y);

} else {

System.out.println("The log is undefined");

}

The output is better now, but there is another problem. What if the user

doesn’t enter a number at all? What would happen if they typed the word

“hello”, either by accident or on purpose?

Exception in thread "main" java.util.InputMismatchException

at java.util.Scanner.throwFor(Scanner.java:864)

at java.util.Scanner.next(Scanner.java:1485)

at java.util.Scanner.nextDouble(Scanner.java:2413)

at Logarithm.main(Logarithm.java:8)

If the user inputs a String when we expect a double, Java reports an “input

mismatch” exception. We can prevent this run-time error from happening by

testing the input first.

The Scanner class provides hasNextDouble, which checks whether the next

input can be interpreted as a double. If not, we can display an error message:

if (!in.hasNextDouble()) {

String word = in.next();

System.err.println(word + "is not a number");

}

In contrast to in.nextLine, which returns an entire line of input, the in.next

method returns only the next token of input. We can use in.next to show

the user exactly which word they typed was not a number.

This example also uses System.err, which is an OutputStream for error

messages and warnings. Some development environments display output to

System.err with a different color or in a separate window.

5.10 Example Program 87

5.10 Example Program

In this chapter, you have seen relational and logical operators, if statements,

boolean methods, and validating input. The following program shows how the

individual code examples in the previous section fit together:

import java.util.Scanner;

/**

* Demonstrates input validation using if statements.

*/

public class Logarithm {

public static void main(String[] args) {

// prompt for input

Scanner in = new Scanner(System.in);

System.out.print("Enter a number: ");

// check the format

if (!in.hasNextDouble()) {

String word = in.next();

System.err.println(word + " is not a number");

return;

}

// check the range

double x = in.nextDouble();

if (x > 0) {

double y = Math.log(x);

System.out.println("The log is " + y);

} else {

System.out.println("The log is undefined");

}

}

}

Notice that the return statement allows you to exit a method before you reach

the end of it. Returning from main terminates the program.

88 Chapter 5 Conditionals and Logic

What started as five lines of code at the beginning of Section 5.9 is now a

30-line program. Making programs robust (and secure) often requires a lot of

additional checking, as shown in this example.

It’s important to write comments every few lines to make your code easier to

understand. Comments not only help other people read your code, but also

help you document what you’re trying to do. If there’s a mistake in the code,

finding it will be a lot easier when there are good comments.

5.11 Vocabulary

boolean: A data type with only two possible values, true and false.

relational operator: An operator that compares two values and produces a

boolean indicating the relationship between them.

conditional statement: A statement that uses a condition to determine

which statements to execute.

block: A sequence of statements, surrounded by braces, that generally runs

as the result of a condition.

branch: One of the alternative blocks after a conditional statement. For

example, an if-else statement has two branches.

chaining: A way of joining several conditional statements in sequence.

nesting: Putting a conditional statement inside one or both branches of

another conditional statement.

logical operator: An operator that combines boolean values and produces a

boolean value.

short circuit: A way of evaluating logical operators that evaluates the second

operand only if necessary.

De Morgan’s laws: Mathematical rules that show how to negate a logical

expression.

flag: A variable (usually boolean) that represents a condition or status.

5.12 Exercises 89

validate: To confirm that an input value is of the correct type and within the

expected range.

hacker: A programmer who breaks into computer systems. The term hacker

may also apply to someone who enjoys writing code.

NaN: A special floating-point value that stands for “not a number”.

5.12 Exercises

The code for this chapter is in the ch05 directory of ThinkJavaCode2. See

page xviii for instructions on how to download the repository. Before you

start the exercises, we recommend that you compile and run the examples.

If you have not already read Appendix A.5, now might be a good time. It

describes Checkstyle, a tool that analyzes many aspects of your source code.

Exercise 5.1 Rewrite the following code by using a single if statement:

if (x > 0) {

if (x < 10) {

System.out.println("positive single digit number.");

}

}

Exercise 5.2 Now that we have conditional statements, we can get back to

the Guess My Number game from Exercise 3.4.

You should already have a program that chooses a random number, prompts

the user to guess it, and displays the difference between the guess and the

chosen number.

By adding a small amount of code at a time and testing as you go, modify the

program so it tells the user whether the guess is too high or too low, and then

prompts the user for another guess.

The program should continue until the user gets it right or guesses incorrectly

three times. If the user guesses the correct number, display a message and

terminate the program.

90 Chapter 5 Conditionals and Logic

Exercise 5.3 Fermat’s Last Theorem says that there are no integers a, b, c,

and n such that an + bn = cn, except when n ≤ 2.

Write a program named Fermat.java that inputs four integers (a, b, c, and

n) and checks to see if Fermat’s theorem holds. If n is greater than 2 and

an + bn = cn, the program should display “Holy smokes, Fermat was wrong!”

Otherwise, the program should display “No, that doesn’t work.”

Hint: You might want to use Math.pow.

Exercise 5.4 Using the following variables, evaluate the logic expressions in

the table that follows. Write your answers as true, false, or error.

boolean yes = true;

boolean no = false;

int loVal = -999;

int hiVal = 999;

double grade = 87.5;

double amount = 50.0;

String hello = "world";

Expression Result

yes == no || grade > amount

amount == 40.0 || 50.0

hiVal != loVal || loVal < 0

True || hello.length() > 0

hello.isEmpty() && yes

grade <= 100 && !false

!yes || no

grade > 75 > amount

amount <= hiVal && amount >= loVal

no && !no || yes && !yes

5.12 Exercises 91

Exercise 5.5 What is the output of the following program? Determine the

answer without using a computer.

public static void main(String[] args) {

boolean flag1 = isHoopy(202);

boolean flag2 = isFrabjuous(202);

System.out.println(flag1);

System.out.println(flag2);

if (flag1 && flag2) {

System.out.println("ping!");

}

if (flag1 || flag2) {

System.out.println("pong!");

}

}

public static boolean isHoopy(int x) {

boolean hoopyFlag;

if (x % 2 == 0) {

hoopyFlag = true;

} else {

hoopyFlag = false;

}

return hoopyFlag;

}

public static boolean isFrabjuous(int x) {

boolean frabjuousFlag;

if (x > 0) {

frabjuousFlag = true;

} else {

frabjuousFlag = false;

}

return frabjuousFlag;

}

The purpose of this exercise is to make sure you understand logical operators

and the flow of execution through methods.

92 Chapter 5 Conditionals and Logic

Exercise 5.6 Write a program named Quadratic.java that finds the roots of

ax2 + bx+ c = 0 using the quadratic formula:

x =
−b±

√
b2 − 4ac

2a

Prompt the user to input integers for a, b, and c. Compute the two solutions

for x, and display the results.

Your program should be able to handle inputs for which there is only one or

no solution. Specifically, it should not divide by zero or take the square root

of a negative number.

Be sure to validate all inputs. The user should never see an input mismatch

exception. Display specific error messages that include the invalid input.

Exercise 5.7 If you are given three sticks, you may or may not be able to

arrange them in a triangle. For example, if one of the sticks is 12 inches long

and the other two are 1 inch long, you will not be able to get the short sticks

to meet in the middle. For any three lengths, there is a simple test to see if it

is possible to form a triangle:

If any of the three lengths is greater than the sum of the other two,

you cannot form a triangle.

Write a program named Triangle.java that inputs three integers, and then

outputs whether you can (or cannot) form a triangle from the given lengths.

Reuse your code from the previous exercise to validate the inputs. Display an

error if any of the lengths are negative or zero.

Chapter 6

Recursive Methods

In this chapter, we explore one of the most magical things that a method can

do: invoke itself to solve a smaller version of the same problem. A method

that invokes itself is called recursive.

6.1 Recursive Void Methods

Consider the following example:

public static void countdown(int n) {

if (n == 0) {

System.out.println("Blastoff!");

} else {

System.out.println(n);

countdown(n - 1);

}

}

The name of the method is countdown; it takes a single integer as a parameter.

If the parameter is 0, it displays the word Blastoff!. Otherwise, it displays

the number and then invokes itself, passing n - 1 as the argument.

What happens if we invoke countdown(3) from main?

94 Chapter 6 Recursive Methods

The execution of countdown begins with n == 3, and since n is not

0, it displays the value 3, and then invokes itself...

The execution of countdown begins with n == 2, and

since n is not 0, it displays the value 2, and then invokes

itself...

The execution of countdown begins with n == 1,

and since n is not 0, it displays the value 1, and

then invokes itself...

The execution of countdown begins with

n == 0, and since n is 0, it displays the

word Blastoff! and then returns.

The countdown that got n == 1 returns.

The countdown that got n == 2 returns.

The countdown that got n == 3 returns.

And then you’re back in main. So the total output looks like this:

3

2

1

Blastoff!

As a second example, we’ll rewrite the methods newLine and threeLine from

Section 4.1. Here they are again:

public static void newLine() {

System.out.println();

}

public static void threeLine() {

newLine();

newLine();

newLine();

}

Although these methods work, they would not help if we wanted to display two

newlines, or maybe 100. A more general alternative would be the following:

6.2 Recursive Stack Diagrams 95

public static void nLines(int n) {

if (n > 0) {

System.out.println();

nLines(n - 1);

}

}

This method takes an integer, n, as a parameter and displays n newlines. The

structure is similar to countdown. As long as n is greater than 0, it displays

a newline and then invokes itself to display (n − 1) additional newlines. The

total number of newlines is 1 + (n− 1), which is just what we wanted: n.

6.2 Recursive Stack Diagrams

In Section 4.5, we used a stack diagram to represent the state of a program

during a method invocation. The same kind of diagram can make it easier to

interpret a recursive method.

Remember that every time a method gets called, Java creates a new frame

that contains the method’s parameters and variables. Figure 6.1 is a stack

diagram for countdown, called with n == 3.

countdown

countdown

main

countdown

countdown

3

2

1

0

n

n

n

n

Figure 6.1: Stack diagram for the countdown program.

By convention, the frame for main is at the top, and the stack of other frames

grows down. That way, we can draw stack diagrams on paper without needing

to guess how far they will grow. The frame for main is empty because main

96 Chapter 6 Recursive Methods

does not have any variables. (It has the parameter args, but since we’re not

using it, we left it out of the diagram.)

There are four frames for countdown, each with a different value for the

parameter n. The last frame, with n == 0, is called the base case. It does

not make a recursive call, so there are no more frames below it.

If there is no base case in a recursive method, or if the base case is never

reached, the stack would grow forever—at least in theory. In practice, the size

of the stack is limited. If you exceed the limit, you get a StackOverflowError.

For example, here is a recursive method without a base case:

public static void forever(String s) {

System.out.println(s);

forever(s);

}

This method displays the given string until the stack overflows, at which point

it throws an error. Try this example on your computer—you might be surprised

by how long the error message is!

6.3 Value-Returning Methods

To give you an idea of what you can do with the tools you have learned, let’s

look at methods that evaluate recursively defined mathematical functions.

A recursive definition is similar to a “circular” definition, in the sense that

the definition refers to the thing being defined. Of course, a truly circular

definition is not very useful:

recursive:

An adjective used to describe a method that is recursive.

If you saw that definition in the dictionary, you might be annoyed. Then again,

if you search for “recursion” on Google, it displays “Did you mean: recursion”

as an inside joke. People fall for that link all the time. A more sane definition

of recursion is the process of invoking (and restarting) the same method that

is currently executing.

6.3 Value-Returning Methods 97

Many mathematical functions are defined recursively, because that is often the

simplest way. For example, the factorial of an integer n, which is written n!,

is defined like this:

0! = 1

n! = n · (n− 1)!

Don’t confuse the mathematical symbol !, which means factorial, with the

Java operator !, which means not. This definition says that factorial(0) is

1, and factorial(n) is n * factorial(n - 1).

So factorial(3) is 3 * factorial(2); factorial(2) is 2 * factorial(1);

factorial(1) is 1 * factorial(0); and factorial(0) is 1. Putting it all

together, we get 3 * 2 * 1 * 1, which is 6.

If you can formulate a recursive definition of something, you can easily write

a Java method to evaluate it. The first step is to decide what the parameters

and return type are. Since factorial is defined for integers, the method takes

an int as a parameter and returns an int:

public static int factorial(int n) {

return 0; // stub

}

Next, we think about the base case. If the argument happens to be 0, we

return 1:

public static int factorial(int n) {

if (n == 0) {

return 1;

}

return 0; // stub

}

Otherwise, and this is the interesting part, we have to make a recursive call

to find the factorial of n− 1, and then multiply it by n:

98 Chapter 6 Recursive Methods

public static int factorial(int n) {

if (n == 0) {

return 1;

}

int recurse = factorial(n - 1);

int result = n * recurse;

return result;

}

To illustrate what is happening, we’ll use the temporary variables recurse

and result. In each method call, recurse stores the factorial of n − 1, and

result stores the factorial of n.

The flow of execution for this program is similar to countdown from Section 6.1.

If we invoke factorial with the value 3:

Since 3 is not 0, we skip the first branch and calculate the factorial

of n− 1...

Since 2 is not 0, we skip the first branch and calculate

the factorial of n− 1...

Since 1 is not 0, we skip the first branch and

calculate the factorial of n− 1...

Since 0 is 0, we take the first branch and

return the value 1 immediately.

The return value (1) gets multiplied by n, which

is 1, and the result is returned.

The return value (1) gets multiplied by n, which is 2,

and the result is returned.

The return value (2) gets multiplied by n, which is 3, and the result,

6, is returned to whatever invoked factorial(3).

Figure 6.2 shows what the stack diagram looks like for this sequence of method

invocations. The return values are shown being passed up the stack. Notice

that recurse and result do not exist in the last frame, because when n == 0,

the code that declares them does not execute.

6.4 The Leap of Faith 99

factorial

factorial

factorial

factorial

main

3

2

1

0

2

1

1

6

2

1

n

n

n

n

recurse

recurse

recurse result

result

result

1

1

2

6

Figure 6.2: Stack diagram for the factorial method.

6.4 The Leap of Faith

Following the flow of execution is one way to read programs, but it can quickly

become overwhelming. Another way to understand recursion is the leap of

faith: when you come to a method invocation, instead of following the flow

of execution, you assume that the method works correctly and returns the

appropriate value.

In fact, you are already practicing this leap of faith when you use methods

in the Java library. When you invoke Math.cos or System.out.println, you

don’t think about the implementations of those methods. You just assume

that they work properly.

The same is true of other methods. For example, consider the method from

Section 5.8 that determines whether an integer has only one digit:

public static boolean isSingleDigit(int x) {

return x > -10 && x < 10;

}

Once you convince yourself that this method is correct—by examining and

testing the code—you can just use the method without ever looking at the

implementation again.

Recursive methods are no different. When you get to a recursive call, don’t

think about the flow of execution. Instead, assume that the recursive call

produces the desired result.

100 Chapter 6 Recursive Methods

For example, “Assuming that I can find the factorial of n−1, can I compute the

factorial of n?” Yes you can, by multiplying by n. Here’s an implementation

of factorial with the temporary variables removed:

public static int factorial(int n) {

if (n == 0) {

return 1;

}

return n * factorial(n - 1);

}

Notice how similar this version is to the original mathematical definition:

0! = 1

n! = n · (n− 1)!

Of course, it is strange to assume that the method works correctly when you

have not finished writing it. But that’s why it’s called a leap of faith!

Another common recursively defined mathematical function is the Fibonacci

sequence, which has the following definition:

fibonacci(1) = 1

fibonacci(2) = 1

fibonacci(n) = fibonacci(n− 1) + fibonacci(n− 2)

Notice that each Fibonacci number is the sum of the two preceding Fibonacci

numbers. Translated into Java, this function is as follows:

public static int fibonacci(int n) {

if (n == 1 || n == 2) {

return 1;

}

return fibonacci(n - 1) + fibonacci(n - 2);

}

If you try to follow the flow of execution here, even for small values of n, your

head will explode. But if we take a leap of faith and assume that the two

recursive invocations work correctly, then it is clear, looking at the definition,

that our implementation is correct.

6.5 Counting Up Recursively 101

6.5 Counting Up Recursively

The countdown example in Section 6.1 has three parts: (1) it checks the base

case, (2) it displays something, and (3) it makes a recursive call. What do you

think happens if you reverse steps 2 and 3, making the recursive call before

displaying?

public static void countup(int n) {

if (n == 0) {

System.out.println("Blastoff!");

} else {

countup(n - 1);

System.out.println(n);

}

}

The stack diagram is the same as before, and the method is still called n

times. But now the System.out.println happens just before each recursive

call returns. As a result, it counts up instead of down:

Blastoff!

1

2

3

Keep this in mind for the next example, which displays numbers in binary.

6.6 Binary Number System

You are probably aware that computers can store only 1s and 0s. That’s

because processors and memory are made up of billions of tiny on-off switches.

The value 1 means a switch is on; the value 0 means a switch is off. All types

of data, whether integer, floating-point, text, audio, video, or something else,

are represented by 1s and 0s.

Fortunately, we can represent any integer as a binary number. Table 6.1

shows the first eight numbers in binary and decimal.

102 Chapter 6 Recursive Methods

Binary Decimal

0 0

1 1

10 2

11 3

100 4

101 5

110 6

111 7

Table 6.1: The first eight binary numbers.

In decimal there are 10 digits, and the written representation of numbers is

based on powers of 10. For example, the number 456 has 4 in the 100’s place,

5 in the 10’s place, and 6 in the 1’s place. So the value is 400 + 50 + 6:

4 5 6

102 101 100

In binary there are two digits, and the written representation of numbers is

based on powers of two. For example, the number 10111 has 1 in the 16’s

place, 0 in the 8’s place, 1 in the 4’s place, 1 in the 2’s place, and 1 in the 1’s

place. So the value is 16 + 0 + 4 + 2 + 1, which is 23 in decimal.

1 0 1 1 1

24 23 22 21 20

To get the digits of a decimal number, we can use repeated division. For

example, if we divide 456 by 10, we get 45 with remainder 6. The remainder

is the rightmost digit of 456.

If we divide the result again, we get 4 with remainder 5. The remainder is the

second rightmost digit of 456. And if we divide again, we get 0 with remainder

4. The remainder is the third rightmost digit of 456, and the result, 0, tells us

that we’re done.

6.7 Recursive Binary Method 103

We can do the same thing in binary if we divide by 2. When you divide by

2, the remainder is the right-most digit, either 0 or 1. If you divide the result

again, you get the second rightmost digit. If you keep going, and write down

the remainders, you’ll have your number in binary:

23 / 2 is 11 remainder 1

11 / 2 is 5 remainder 1

5 / 2 is 2 remainder 1

2 / 2 is 1 remainder 0

1 / 2 is 0 remainder 1

Reading these remainders from bottom to top, 23 in binary is 10111.

6.7 Recursive Binary Method

Now, to display a number in binary, we can combine the algorithm from the

previous section and the “count up” pattern from Section 6.5.

Here is a recursive method that displays any positive integer in binary:

public static void displayBinary(int value) {

if (value > 0) {

displayBinary(value / 2);

System.out.print(value % 2);

}

}

If value is 0, displayBinary does nothing (that’s the base case). If the

argument is positive, the method divides it by 2 and calls displayBinary

recursively. When the recursive call returns, the method displays one digit of

the result and returns (again). Figure 6.3 illustrates this process.

The leftmost digit is near the bottom of the stack, so it gets displayed first. The

rightmost digit, near the top of the stack, gets displayed last. After invoking

displayBinary, we use println to complete the output:

displayBinary(23); // output is 10111

System.out.println();

104 Chapter 6 Recursive Methods

main

displayBinary value 0

print(1)displayBinary value 1

print(0)displayBinary value 2

print(1)displayBinary value

print(1)displayBinary value 11

print(1)displayBinary value 23

println()

 5

Figure 6.3: Stack diagram for the displayBinary method.

6.8 CodingBat Problems

In the past several chapters, you’ve seen methods, conditions, and recursion. A

great resource for practicing all of these concepts is https://codingbat.com/.

CodingBat is a free website of programming problems developed by Nick

Parlante, a computer science lecturer at Stanford University. As you work

on these problems, CodingBat saves your progress (if you create an account).

To conclude this chapter, we consider one problem in the Recursion-1 section

of CodingBat. One of them deals with strings. The problem has the general

recursive idea: check the base case, look at the current index, and recursively

handle the rest.

The problem is available at https://codingbat.com/prob/p118230:

Recursion-1 noX

Given a string, compute recursively a new string where all the 'x'

chars have been removed.

noX("xaxb") → "ab"

noX("abc") → "abc"

noX("xx") → ""

https://codingbat.com/
https://codingbat.com/prob/p118230

6.8 CodingBat Problems 105

When solving recursive problems, it helps to think about the base case first.

The base case is the easiest version of the problem; for noX, it’s the empty

string. If the argument is an empty string, there are no x’s to be removed:

if (str.length() == 0) {

return "";

}

Next comes the more difficult part. To solve a problem recursively, you need

to think of a simpler instance of the same problem. For noX, it’s removing all

the x’s from a shorter string.

So let’s split the string into two parts, the first letter and the rest:

char first = str.charAt(0);

String rest = str.substring(1);

Now we can make a recursive call to remove the x’s from rest:

String recurse = noX(rest);

If first happens to be an x, we’re done; we just have to return recurse.

Otherwise, we have to concatenate first and recurse. Here’s the if statement

we need:

if (first == 'x') {

return recurse;

} else {

return first + recurse;

}

You can run this solution on CodingBat by pasting these snippets into the

provided method definition.

To see how these solutions actually work, you might find it helpful to step

through them with a debugger (see Appendix A.6) or Java Tutor (https:

//thinkjava.org/javatutor). Then try solving other CodingBat problems

on your own.

Learning to think recursively is an important part of learning to think like a

computer scientist. Many algorithms can be written concisely with recursive

methods that perform computations on the way down, on the way up, or both.

https://thinkjava.org/javatutor
https://thinkjava.org/javatutor

106 Chapter 6 Recursive Methods

6.9 Vocabulary

iterative: A method or algorithm that repeats steps by using one or more

loops.

recursive: A method or algorithm that invokes itself one or more times with

different arguments.

recursion: The process of invoking (and restarting) the same method that is

currently executing.

base case: A condition that causes a recursive method not to make another

recursive call.

factorial: The product of all the integers up to and including a given integer.

leap of faith: A way to read recursive programs by assuming that the recursive

call works, rather than following the flow of execution.

binary: A system that uses only zeros and ones to represent numbers. Also

known as “base 2”.

6.10 Exercises

The code for this chapter is in the ch08 directory of ThinkJavaCode2. See: update the code
directory page xviii for instructions on how to download the repository. Before you

start the exercises, we recommend that you compile and run the examples.

If you have not already read Appendix A.7, now might be a good time. It

describes JUnit, a standard framework for writing test code.

Exercise 6.1 The purpose of this exercise is to take a problem and break

it into smaller problems, and to solve the smaller problems by writing simple

methods. Consider the first verse of the song “99 Bottles of Beer”:

99 bottles of beer on the wall,

99 bottles of beer,

ya’ take one down, ya’ pass it around,

98 bottles of beer on the wall.

6.10 Exercises 107

Subsequent verses are identical except that the number of bottles gets smaller

by one in each verse, until the last verse:

No bottles of beer on the wall,

no bottles of beer,

ya’ can’t take one down, ya’ can’t pass it around,

’cause there are no more bottles of beer on the wall!

And then the song (finally) ends.

Write a program that displays the entire lyrics of “99 Bottles of Beer”. Your

program should include a recursive method that does the hard part, but you

might want to write additional methods to separate other parts of the program.

As you develop your code, test it with a small number of verses, like 3.

Exercise 6.2 Write a recursive method named oddSum that takes a positive

odd integer n and returns the sum of odd integers from 1 to n. Start with

a base case, and use temporary variables to debug your solution. You might

find it helpful to print the value of n each time oddSum is invoked.

Exercise 6.3 In this exercise, you will use a stack diagram to understand

the execution of the following recursive method:

public static void main(String[] args) {

System.out.println(prod(1, 4));

}

public static int prod(int m, int n) {

if (m == n) {

return n;

} else {

int recurse = prod(m, n - 1);

int result = n * recurse;

return result;

}

}

1. Draw a stack diagram showing the state of the program just before the

last invocation of prod completes.

108 Chapter 6 Recursive Methods

2. What is the output of this program? (Try to answer this question on

paper first; then run the code to check your answer.)

3. Explain in a few words what prod does (without getting into the details

of how it works).

4. Rewrite prod without the temporary variables recurse and result.

Hint: You need only one line for the else branch.

Exercise 6.4 The goal of this exercise is to translate a recursive definition

into a Java method. The Ackermann function is defined for non-negative

integers as follows:

A(m,n) =

n+ 1 if m = 0

A(m− 1, 1) if m > 0 and n = 0

A(m− 1, A(m,n− 1)) if m > 0 and n > 0

Write a recursive method called ack that takes two ints as parameters and

that computes and returns the value of the Ackermann function.

Test your implementation of Ackermann by invoking it from main and displaying

the return value. Note the return value gets very big very quickly. You should

try it only for small values of m and n (not bigger than 3).

Exercise 6.5 Write a recursive method called power that takes a double x

and an integer n and returns xn.

Hint: A recursive definition of this operation is xn = x ·xn−1. Also, remember

that anything raised to the zeroth power is 1.

Optional challenge: you can make this method more efficient, when n is even,

using xn =
(
xn/2

)2
.

Exercise 6.6

Exercise 6.7 Create a program called Recurse.java and type in the following

methods:

6.10 Exercises 109

/**

* Returns the first character of the given String.

*/

public static char first(String s) {

return s.charAt(0);

}

/**

* Returns all but the first letter of the given String.

*/

public static String rest(String s) {

return s.substring(1);

}

/**

* Returns all but the first and last letter of the String.

*/

public static String middle(String s) {

return s.substring(1, s.length() - 1);

}

/**

* Returns the length of the given String.

*/

public static int length(String s) {

return s.length();

}

110 Chapter 6 Recursive Methods

1. Write some code in main that tests each of these methods. Make sure

they work, and you understand what they do.

2. Using these methods, and without using any other String methods,

write a method called printString that takes a string as a parameter

and displays the letters of the string, one on each line. It should be a

void method.

3. Again using only these methods, write a method called printBackward

that does the same thing as printString but displays the string backward

(again, one character per line).

4. Now write a method called reverseString that takes a string as a

parameter and returns a new string as a return value. The new string

should contain the same letters as the parameter, but in reverse order:

String backwards = reverseString("coffee");

System.out.println(backwards);

The output of this example code should be as follows:

eeffoc

5. A palindrome is a word that reads the same both forward and backward,

like “otto” and “palindromeemordnilap”. Here’s one way to test whether

a string is a palindrome:

A single letter is a palindrome, a two-letter word is a palindrome

if the letters are the same, and any other word is a palindrome

if the first letter is the same as the last and the middle is a

palindrome.

Write a recursive method named isPalindrome that takes a String and

returns a boolean indicating whether the word is a palindrome.

Chapter 7

Objects: Strings

Java is an object-oriented language, which means that it uses objects to

(1) represent data and (2) provide methods related to them. This way of

organizing programs is a powerful design concept, and we will introduce it

gradually throughout the remainder of the book.

An object is a collection of data that provides a set of methods. For example,

Scanner, which you saw in Section 3.2, is an object that provides methods for

parsing input. System.out and System.in are also objects.

Strings are objects, too. They contain characters and provide methods for

manipulating character data. Other data types, like Integer, contain numbers

and provide methods for manipulating number data. We will explore some of

these methods in this chapter.

7.1 Primitives vs Objects

Not everything in Java is an object: int, double, char, and boolean are

primitive types. When you declare a variable with a primitive type, Java

reserves a small amount of memory to store its value. Figure 10.1 shows how

the following values are stored in memory:

int number = -2;

char symbol = '!';

112 Chapter 7 Objects: Strings

number

symbol

−2

!

Figure 7.1: Memory diagram of two primitive variables.

Objects work in a similar way. For example, this line declares a String variable

named word and creates a String object, as shown in Figure 10.3:

String word = "dog";

word

String

"dog"

Figure 7.2: Memory diagram of a String object.

Objects and arrays are usually created with the new keyword, which allocates

memory for them. For convenience, you don’t have to use new to create strings:

String word1 = new String("dog"); // creates a string object

String word2 = "dog"; // implicitly creates a string object

Recall from Section 7.6 that you need to use the equals method to compare

strings. The equals method traverses the String objects and tests whether

they contain the same characters.

To test whether two integers or other primitive types are equal, you can simply

use the == operator. But two String objects with the same characters would

not be considered equal in the == sense. The == operator, when applied to

string variables, tests only whether they refer to the same object.

As mentioned above, Strings contain characters, and since they are objects,

they have methods for manipulating character data. The rest of the chapter

will cover some String methods.

7.2 Characters

Some of the most interesting problems in computer science involve searching

and manipulating text. Strings provide a method named charAt. It returns

7.2 Characters 113

a char, a data type that stores an individual character (as opposed to strings

of them):

String fruit = "banana";

char letter = fruit.charAt(0);

The argument 0 means that we want the character at index 0. String indexes

range from 0 to n − 1, where n is the length of the string. So the character

assigned to letter is 'b':

b a n a n a

0 1 2 3 4 5

Characters work like the other data types you have seen. You can compare

them using relational operators:

if (letter == 'A') {

System.out.println("It's an A!");

}

Character literals, like 'A', appear in single quotes. Unlike string literals,

which appear in double quotes, character literals can contain only a single

character. Escape sequences, like '\t', are legal because they represent a

single character.

Underneath the hood, characters have numerical values. So if we called

incrementLetter('A'), based on the following recursive method, the letters

of the alphabet will be displayed:

public static void incrementLetter(char c) {

if (c > 'Z') {

return;

}

System.out.print(c);

incrementLetter(c+1);

}

The output is shown here:

ABCDEFGHIJKLMNOPQRSTUVWXYZ

114 Chapter 7 Objects: Strings

Java uses Unicode to represent characters, so strings can store text in other

alphabets like Cyrillic and Greek, and non-alphabetic languages like Chinese.

You can read more about it at the Unicode website (https://unicode.org/).

In Unicode, each character is represented by a “code point”, which you can

think of as an integer. The code points for uppercase Greek letters run from

913 to 937, so we can display the Greek alphabet like this:

public static void printGreek(int i) {

if (i >= 938) {

return;

}

System.out.print((char) i);

printGreek(i+1);

}

System.out.print("Greek alphabet: ");

printGreek(913);

This example uses a type cast to convert each integer (in the range) to the

corresponding character. Try running the code and see what happens.

7.3 String Iteration

Strings provide a method called length that returns the number of characters

in the string. The following method displays the characters in fruit, one on

each line:

https://unicode.org/

7.3 String Iteration 115

public static void displayLetters(String fruit, int index) {

if (index == fruit.length()) {

return;

}

char letter = fruit.charAt(index);

System.out.println(letter);

displayLetters(fruit, index+1);

}

public static void displayLetters(String fruit) {

displayLetters(fruit, 0);

}

displayLetters("orange");

Because length is a method, you have to invoke it with parentheses (there

are no arguments). When i is equal to the length of the string, the condition

becomes false and the recursive method displayLetters stops calling itself.

To find the last letter of a string, you might be tempted to do something like

the following:

int length = fruit.length();

char last = fruit.charAt(length); // wrong!

This code compiles and runs, but invoking the charAt method throws a

StringIndexOutOfBoundsException. The problem is that there is no sixth

letter in "banana". Since we started counting at 0, the six letters are indexed

from 0 to 5. To get the last character, you have to subtract 1 from length:

int length = fruit.length();

char last = fruit.charAt(length - 1); // correct

Many string algorithms involve reading one string and building another. For

example, to reverse a string, we can concatenate one character at a time:

116 Chapter 7 Objects: Strings

public static String reverse(String s, int index) {

if (index < 0) {

return "";

}

return s.charAt(index) + reverse(s, index-1);

}

public static String reverse(String s) {

return reverse(s, s.length() - 1);

}

The initial value of r is "", which is an empty string. The loop iterates the

indexes of s in reverse order. Each time through the loop, the += operator

appends the next character to r. When the loop exits, r contains the characters

from s in reverse order. So the result of reverse("banana") is "ananab".

7.4 The indexOf Method

To search for a specific character in a string, you could write a recursive method

and use charAt as in the previous section. However, the String class already

provides a method for doing just that:

String fruit = "banana";

int index = fruit.indexOf('a'); // returns 1

This example finds the index of 'a' in the string. But the letter appears

three times, so it’s not obvious what indexOf might do. According to the

documentation, it returns the index of the first appearance.

To find subsequent appearances, you can use another version of indexOf, which

takes a second argument that indicates where in the string to start looking:

int index = fruit.indexOf('a', 2); // returns 3

To visualize how indexOf and other String methods work, it helps to draw

a picture like Figure 7.3. The previous code starts at index 2 (the first 'n')

and finds the next 'a', which is at index 3.

7.5 Substrings 117

0 1 2 3

fruit b a n a

4 5

a n

Figure 7.3: Memory diagram for a String of six characters.

If the character happens to appear at the starting index, the starting index is

the answer. So fruit.indexOf('a', 5) returns 5. If the character does not

appear in the string, indexOf returns -1. Since indexes cannot be negative,

this value indicates the character was not found.

You can also use indexOf to search for an entire string, not just a single

character. For example, the expression fruit.indexOf("nan") returns 2.

7.5 Substrings

In addition to searching strings, we often need to extract parts of strings. The

substring method returns a new string that copies letters from an existing

string, given a pair of indexes:

� fruit.substring(0, 3) returns "ban"

� fruit.substring(2, 5) returns "nan"

� fruit.substring(6, 6) returns ""

Notice that the character indicated by the second index is not included. Defining

substring this way simplifies some common operations. For example, to select

a substring with length len, starting at index i, you could write fruit.substring(i, i + len).

Like most string methods, substring is overloaded. That is, there are other

versions of substring that have different parameters. If it’s invoked with one

argument, it returns the letters from that index to the end:

� fruit.substring(0) returns "banana"

� fruit.substring(2) returns "nana"

� fruit.substring(6) returns ""

118 Chapter 7 Objects: Strings

The first example returns a copy of the entire string. The second example

returns all but the first two characters. As the last example shows, substring

returns the empty string if the argument is the length of the string.

We could also use fruit.substring(2, fruit.length()) to get the result

"nana". But calling substring with one argument is more convenient when

you want the end of the string.

7.6 String Comparison

When comparing strings, it might be tempting to use the == and != operators.

But that will almost never work. The following code compiles and runs, but

it always displays Goodbye! regardless what the user types.

System.out.print("Play again? ");

String answer = in.nextLine();

if (answer == "yes") { // wrong!

System.out.println("Let's go!");

} else {

System.out.println("Goodbye!");

}

The problem is that the == operator checks whether the two operands refer to

the same object. Even if the answer is "yes", it will refer to a different object

in memory than the literal string "yes" in the code. You’ll learn more about

objects and references in the next chapter.

The correct way to compare strings is with the equals method, like this:

if (answer.equals("yes")) {

System.out.println("Let's go!");

}

This example invokes equals on answer and passes "yes" as an argument.

The equals method returns true if the strings contain the same characters;

otherwise, it returns false.

If two strings differ, we can use compareTo to see which comes first in alphabetical

order:

7.7 String Formatting 119

String name1 = "Alan Turing";

String name2 = "Ada Lovelace";

int diff = name1.compareTo(name2);

if (diff < 0) {

System.out.println("name1 comes before name2.");

} else if (diff > 0) {

System.out.println("name2 comes before name1.");

} else {

System.out.println("The names are the same.");

}

The return value from compareTo is the difference between the first characters

in the strings that are not the same. In the preceding code, compareTo returns

positive 8, because the second letter of "Ada" comes before the second letter

of "Alan" by eight letters.

If the first string (the one on which the method is invoked) comes earlier in

the alphabet, the difference is negative. If it comes later in the alphabet, the

difference is positive. If the strings are equal, their difference is zero.

Both equals and compareTo are case-sensitive. In Unicode, uppercase letters

come before lowercase letters. So "Ada" comes before "ada".

7.7 String Formatting

In Section 3.5, we learned how to use System.out.printf to display formatted

output. Sometimes programs need to create strings that are formatted a

certain way, but not display them immediately (or ever). For example, the

following method returns a time string in 12-hour format:

120 Chapter 7 Objects: Strings

public static String timeString(int hour, int minute) {

String ampm;

if (hour < 12) {

ampm = "AM";

if (hour == 0) {

hour = 12; // midnight

}

} else {

ampm = "PM";

hour = hour - 12;

}

return String.format("%02d:%02d %s", hour, minute, ampm);

}

String.format takes the same arguments as System.out.printf: a format

specifier followed by a sequence of values. The main difference is that System.out.printf

displays the result on the screen. String.format creates a new string but does

not display anything.

In this example, the format specifier %02d means “two-digit integer padded

with zeros”, so timeString(19, 5) returns the string "07:05 PM". As an

exercise, try writing two nested for loops (in main) that invoke timeString

and display all possible times over a 24-hour period.

Be sure to skim through the documentation for String. Knowing what other

methods are there will help you avoid reinventing the wheel. The easiest way

to find documentation for Java classes is to do a web search for “Java” and

the name of the class.

7.8 Vocabulary

increment: Increase the value of a variable.

decrement: Decrease the value of a variable.

index: An integer variable or value used to indicate a character in a string.

Unicode: An international standard for representing characters in most of

the world’s languages.

7.9 Exercises 121

empty string: The string "", which contains no characters and has a length

of zero.

overloaded: Two or more methods with the same name but different parameters.

7.9 Exercises

The code for this chapter is in the ch06 directory of ThinkJavaCode2. See

page xviii for instructions on how to download the repository. Before you

start the exercises, we recommend that you compile and run the examples.

If you have not already read Appendix A.6, now might be a good time. It

describes the DrJava debugger, which is a useful tool for visualizing the flow

of execution through loops.

Exercise 7.1 Consider the following methods (main and loop):

1. Draw a table that shows the value of the variables i and n during the

execution of loop. The table should contain one column for each variable

and one line for each iteration.

2. What is the output of this program?

3. Can you prove that this loop terminates for any positive value of n?

public static void main(String[] args) {

loop(10);

}

public static void loop(int n) {

int i = n;

while (i > 1) {

System.out.println(i);

if (i % 2 == 0) {

i = i / 2;

} else {

i = i + 1;

}

}

}

122 Chapter 7 Objects: Strings

Exercise 7.2 Let’s say you are given a number, a, and you want to find

its square root. One way to do that is to start with a rough guess about the

answer, x0, and then improve the guess by using this formula:

x1 = (x0 + a/x0)/2

For example, if we want to find the square root of 9, and we start with x0 = 6,

then x1 = (6 + 9/6)/2 = 3.75, which is closer. We can repeat the procedure,

using x1 to calculate x2, and so on. In this case, x2 = 3.075 and x3 = 3.00091.

So the repetition converges quickly on the correct answer.

Write a method called squareRoot that takes a double and returns an approximation

of the square root of the parameter, using this technique. You should not use

Math.sqrt.

As your initial guess, you should use a/2. Your method should iterate until

it gets two consecutive estimates that differ by less than 0.0001. You can use

Math.abs to calculate the absolute value of the difference.

Exercise 7.3 One way to evaluate exp(−x2) is to use the infinite series

expansion:

exp(−x2) = 1− x2 + x4/2− x6/6 + . . .

The ith term in this series is (−1)ix2i/i!. Write a method named gauss that

takes x and n as arguments and returns the sum of the first n terms of the

series. You should not use factorial or pow.

Exercise 7.4 A word is said to be “abecedarian” if the letters in the word

appear in alphabetical order. For example, the following are all six-letter

English abecedarian words:

abdest, acknow, acorsy, adempt, adipsy, agnosy, befist, behint,

beknow, bijoux, biopsy, cestuy, chintz, deflux, dehors, dehort, deinos,

diluvy, dimpsy

Write a method called isAbecedarian that takes a String and returns a

boolean indicating whether the word is abecedarian.

Exercise 7.5 A word is said to be a “doubloon” if every letter that appears

in the word appears exactly twice. Here are some example doubloons found

in the dictionary:

7.9 Exercises 123

Abba, Anna, appall, appearer, appeases, arraigning, beriberi, bilabial,

boob, Caucasus, coco, Dada, deed, Emmett, Hannah, horseshoer,

intestines, Isis, mama, Mimi, murmur, noon, Otto, papa, peep,

reappear, redder, sees, Shanghaiings, Toto

Write a method called isDoubloon that takes a string and checks whether it is

a doubloon. To ignore case, invoke the toLowerCase method before checking.

Exercise 7.6 In Scrabble1 each player has a set of tiles with letters on them.

The object of the game is to use those letters to spell words. The scoring system

is complex, but longer words are usually worth more than shorter words.

Imagine you are given your set of tiles as a string, like "quijibo", and you

are given another string to test, like "jib".

Write a method called canSpell that takes two strings and checks whether

the set of tiles can spell the word. You might have more than one tile with

the same letter, but you can use each tile only once.

1Scrabble is a registered trademark owned in the USA and Canada by Hasbro Inc., and
in the rest of the world by J. W. Spear & Sons Limited of Maidenhead, Berkshire, England,
a subsidiary of Mattel Inc.

124 Chapter 7 Objects: Strings

Chapter 8

Arrays and References

Up to this point, the only variables we have used were for individual values

such as numbers or strings. In this chapter, you’ll learn how to store multiple

values of the same type by using a single variable. This language feature will

enable you to write programs that manipulate larger amounts of data.

For example, Exercise 9.5 asked you to check whether every letter in a string

appears exactly twice. One algorithm (which hopefully you already discovered)

looks at every character in the string 26 times, once for each lowercase letter:

126 Chapter 8 Arrays and References

public static boolean isDoubloon(String str, char Char) {

if (Char > 'z') {

return true;

}

int firstIndex = str.indexOf(Char);

if (firstIndex == -1 || firstIndex == str.length() - 1) {

return isDoubloon(str, (char) (Char+1));

}

int secondIndex = str.indexOf(Char, firstIndex+1);

if (secondIndex == -1) {

return false; // the character appeared once

}

int thirdIndex = str.indexOf(Char, secondIndex+1);

if (thirdIndex == -1) {

return isDoubloon(str, (char) (Char+1));

}

return false; // if the count is not 0 or 2, return false

}

public static boolean isDoubloon(String str) {

return isDoubloon(str, 'a');

}

This approach is inefficient, especially when the string is long. For example,

there are more than 3 million characters in War and Peace; to process the

whole book, this approach would run about 80 million times.

Another algorithm would initialize 26 variables to zero, go through the string

one time, and use a giant if statement to update the variable for each letter.

But who wants to declare 26 variables?

That’s where arrays come in. We can use a single variable to store 26 integers.

Rather than use an if statement to update each value, we can use arithmetic

to update the nth value directly. We will present this algorithm at the end of

the chapter.

8.1 Creating Arrays 127

8.1 Creating Arrays

An array is a sequence of values; the values in the array are called elements.

You can make an array of ints, doubles, Strings, or any other type, but all

the values in an array must have the same type.

To create an array, you have to declare a variable with an array type and then

create the array itself. Array types look like other Java types, except they are

followed by square brackets ([]). For example, the following lines declare that

counts is an “integer array” and values is a “double array”:

int[] counts;

double[] values;

To create the array itself, you have to use the new operator, which you first

saw in Section 3.2. The new operator allocates memory for the array and

automatically initializes all of its elements to zero:

counts = new int[4];

values = new double[size];

The first assignment makes counts refer to an array of four integers. The

second makes values refer to an array of doubles, but the number of elements

depends on the value of size (at the time the array is created).

Of course, you can also declare the variable and create the array with a single

line of code:

int[] counts = new int[4];

double[] values = new double[size];

You can use any integer expression for the size of an array, as long as the value

is nonnegative. If you try to create an array with -4 elements, for example,

you will get a NegativeArraySizeException. An array with zero elements is

allowed, and there are special uses for such arrays.

You can initialize an array with a comma-separated sequence of elements

enclosed in braces, like this:

int[] a = {1, 2, 3, 4};

This statement creates an array variable, a, and makes it refer to an array

with four elements.

128 Chapter 8 Arrays and References

8.2 Accessing Elements

When you create an array with the new operator, the elements are initialized

to zero. Figure 8.1 shows a memory diagram of the counts array so far.

0 1 2 3

counts 0 0 0 0

Figure 8.1: Memory diagram of an int array.

The arrow indicates that the value of counts is a reference to the array. You

should think of the array and the variable that refers to it as two different

things. As you’ll soon see, we can assign a different variable to refer to the

same array, and we can change the value of counts to refer to a different array.

The boldface numbers inside the boxes are the elements of the array. The

lighter numbers outside the boxes are the indexes used to identify each

location in the array. As with strings, the index of the first element is 0,

not 1. For this reason, we sometimes refer to the first element as the “zeroth”

element.

The [] operator selects elements from an array:

System.out.println("The zeroth element is " + counts[0]);

You can use the [] operator anywhere in an expression:

counts[0] = 7;

counts[1] = counts[0] * 2;

counts[2]++;

counts[3] -= 60;

Figure 8.2 shows the result of these statements.

0 1 2 3

counts 7 14 1 −60

Figure 8.2: Memory diagram after several assignment statements.

You can use any expression as an index, as long as it has type int.

For the counts array, the only legal indexes are 0, 1, 2, and 3. If the index is

negative or greater than 3, the result is an ArrayIndexOutOfBoundsException.

8.3 Displaying Arrays 129

8.3 Displaying Arrays

You can use println to display an array, but it probably doesn’t do what you

would like. For example, say you print an array like this:

int[] a = {1, 2, 3, 4};

System.out.println(a);

The output is something like this:

[I@bf3f7e0

The bracket indicates that the value is an array, I stands for “integer”, and

the rest represents the address of the array in memory.

If we want to display the elements of the array, we can do it ourselves by

writing a method that prints out the value at one index and then recursively

calls itself with the next index.

public static void printArray(int[] array, int index) {

if (index == array.length) {

return;

}

System.out.print(array[index]);

printArray(array, index + 1);

}

public static void printArray(int[] array) {

printArray(array, 0);

}

Given the previous array, the output of printArray is as follows:

{1 2 3 4 }

The Java library includes a class, java.util.Arrays, that provides methods

for working with arrays. One of them, toString, returns a string representation

of an array. After importing Arrays, we can invoke toString like this:

System.out.println(Arrays.toString(a));

130 Chapter 8 Arrays and References

And the output is shown here:

[1, 2, 3, 4]

Notice that Arrays.toString uses square brackets instead of curly braces.

But it beats writing your own printArray method.

8.4 Copying Arrays

As explained in Section 8.2, array variables contain references to arrays. When

you make an assignment to an array variable, it simply copies the reference.

But it doesn’t copy the array itself. For example:

double[] a = new double[3];

double[] b = a;

These statements create an array of three doubles and make two different

variables refer to it, as shown in Figure 8.3.

0 1 2

0.0 0.0 0.0

b

a

Figure 8.3: Memory diagram of two variables referring to the same array.

Any changes made through either variable will be seen by the other. For

example, if we set a[0] = 17.0, and then display b[0], the result is 17.0.

Because a and b are different names for the same thing, they are sometimes

called aliases.

If you actually want to copy the array, not just the reference, you have to

create a new array and copy the elements from one to the other, like this:

8.4 Copying Arrays 131

public static void copyArrayIndexValue(double[] orig, double[] duplicate, int index) {

if (index == orig.length) {

return

}

duplicate[index] = orig[index];

copyArrayIndexValue(orig, duplicate, index + 1);

}

public static void copyArray(double[] orig, double[] duplicate) {

copyArrayIndexValue(orig, duplicate, 0);

}

double[] b = new double[3];

copyArray(a, b);

Using orig.length in the example above allows us to generalize the code to

work with arrays of any size.

All arrays have a built-in constant, length, that stores the number of elements.

In contrast to String.length(), which is a method, a.length is a constant.

The expression a.length may look like a method invocation, but there are no

parentheses and no arguments.

In the last frame when the method copyArrayIndexValue() is invoked, index

is orig.length - 1, which is one more than the index of the last element. In

this condition, we do not try to access a[orig.length], that would throw an

exception.

java.util.Arrays provides a method named copyOf that performs this task

for you. So you can replace the previous code with one line:

double[] b = Arrays.copyOf(a, 3);

The second parameter is the number of elements you want to copy, so copyOf

can also be used to copy part of an array. Figure 8.4 shows the state of the

array variables after invoking Arrays.copyOf.

132 Chapter 8 Arrays and References

1 2

0.0 0.0

0

17.0

1 2

0.0 0.0

0

17.0

b

a

Figure 8.4: Memory diagram of two variables referring to different arrays.

Of course, we can replace our recursive method altogether by using Arrays.copyOf

and a.length for the second argument. The following line produces the same

result shown in Figure 8.4:

double[] b = Arrays.copyOf(a, a.length);

The Arrays class provides many other useful methods like Arrays.compare,

Arrays.equals, Arrays.fill, and Arrays.sort. Take a moment to read the

documentation by searching the web for java.util.Arrays.

8.5 Traversing Arrays

Many computations can be implemented performing an operation on each

element. Applying a method through the elements of an array is called a

traversal:

public static square(int[] a, int index) {

if (index == a.length) {

return;

}

a *= a[index];

}

public static square(int[] a) {

square(a, 0);

}

This example traverses an array and squares each element. If we call square({1,2,3,4,5})

the array has the values {1, 4, 9, 16, 25}.

8.5 Traversing Arrays 133

Another common pattern is a search, which involves traversing an array and

“searching” for a particular element. For example, the following method takes

an array and a value, and it returns the index where the value appears:

public static int search(double[] array, double target, int index) {

if (index == array.length) {

return -1; // target was not found

}

if array[index] == target) {

return index;

}

search(array, target, index + 1);

}

public static int search(double[] array, double target) {

search(array, target, 0);

}

If we find the target value in the array, we return its index immediately and

stop traversing through the array. If the target is not in the array, the method

returns -1, a special value chosen to indicate a failed search. (This code is

essentially what the String.indexOf method does.)

The following code searches an array for the value 1.23, which is the third

element. Because array indexes start at 0, the output is 2:

double[] array = {3.14, -55.0, 1.23, -0.8};

int index = search(array, 1.23);

System.out.println(index);

Another common traversal is a reduce operation, which “reduces” an array

of values down to a single value. Examples include the sum or product of the

elements, the minimum, and the maximum. The following method takes an

array and returns the sum of its elements:

134 Chapter 8 Arrays and References

public static double sum(double[] array, int index) {

if (index == array.length) {

return 0.0;

}

return array[index] + sum(array, index+1)

}

public static double sum(double[] array) {

return sum(array, 0);

}

8.6 Random Numbers

Most computer programs do the same thing every time they run; programs

like that are called deterministic. Usually, determinism is a good thing,

since we expect the same calculation to yield the same result. But for some

applications, we want the computer to be unpredictable. Games are an obvious

example, but there are many others, like scientific simulations.

Making a program nondeterministic turns out to be hard, because it’s

impossible for a computer to generate truly random numbers. But there

are algorithms that generate unpredictable sequences called pseudorandom

numbers. For most applications, they are as good as random.

If you did Exercise 3.4, you have already seen java.util.Random, which

generates pseudorandom numbers. The method nextInt takes an integer

argument, n, and returns a random integer between 0 and n - 1 (inclusive).

If you generate a long series of random numbers, every value should appear, at

least approximately, the same number of times. One way to test this behavior

of nextInt is to generate a large number of values, store them in an array,

and count the number of times each value occurs.

The following method creates an int array and fills it with random numbers

between 0 and 99. The argument specifies the desired size of the array, and

the return value is a reference to the new array:

8.7 Counting Characters 135

public static void randomArrayValue(int[] a, int index) {

if (index == a.length) {

return;

}

Random random = new Random();

a[index] = random.nextInt(100);

return randomArrayValue(a, index + 1);

}

public static int[] randomArray(int size) {

int[] a = new int[size];

return randomArrayValue(a, 0);

}

The following main method generates an array and displays it by using the

printArray method from Section 8.3. We could have used Arrays.toString,

but we like seeing curly braces instead of square brackets:

public static void main(String[] args) {

int[] array = randomArray(8);

printArray(array);

}

Each time you run the program, you should get different values. The output

will look something like this:

{15, 62, 46, 74, 67, 52, 51, 10}

8.7 Counting Characters

We now return to the example from the beginning of the chapter and present

a solution to Exercise 9.5 using arrays. Here is the problem again:

A word is said to be a “doubloon” if every letter that appears in

the word appears exactly twice. Write a method called isDoubloon

that takes a string and checks whether it is a doubloon. To ignore

case, invoke the toLowerCase method before checking.

136 Chapter 8 Arrays and References

Based on the approach from Section 9.9, we will create an array of 26 integers to

count how many times each letter appears. We convert the string to lowercase,

so that we can treat 'A' and 'a' (for example) as the same letter.

int[] counts = new int[26];

String lower = s.toLowerCase();

To update the counts array, we need to compute the index that corresponds

to each character. Fortunately, Java allows you to perform arithmetic on

characters:

public static boolean isDoubloon(int[] counts, String str, int index) {

if (index == str.length) {

return true;

}

char letter = lower.charAt(index);

int letterInt = letter - 'a';

counts[index]++;

if (counts[index] > 2) {

return false;

}

return isDouble(counts, str, index+1);

}

If letter is 'a', the value of index is 0; if letter is 'b', the value of index

is 1, and so on.

Then we use index to increment the corresponding element of counts. At the

end of this recursive method, counts contains a histogram of the letters in the

string lower.

Once we have the counts, we can use a second recursive method to check

whether each letter appears zero or two times:

8.7 Counting Characters 137

public static boolean contains0or2(int[] counts, int index) {

if (index == counts.length) {

return true; // is a doubloon

}

if (counts[index] != 0 && counts[index] != 2) {

return false; // is not a doubloon

}

return contains0or2(counts, index+1);

}

If we find a count that is neither 0 or 2, we know the word is not a doubloon

and we can return immediately. If we make it all the way through the last

recursive call, we know that all counts are 0 or 2, which means the word is a

doubloon.

Pulling together the code fragments, and adding some comments and test

cases, here’s the entire program:

138 Chapter 8 Arrays and References

public class Doubloon {

public static boolean isDoubloon(int[] counts, String str, int index) {

if (index == str.length) {

return true;

}

char letter = lower.charAt(index);

int letterInt = letter - 'a';

counts[index]++;

if (counts[index] > 2) {

return false;

}

return isDouble(counts, str, index+1);

}

public static boolean contains0or2(int[] counts, int index) {

if (index == counts.length) {

return true; // is a doubloon

}

if (counts[index] != 0 && counts[index] != 2) {

return false; // is not a doubloon

}

return contains0or2(counts, index+1);

}

public static boolean isDoubloon(String s) {

return isDoubloon(s, 0);

}

public static void main(String[] args) {

System.out.println(isDoubloon("Mama")); // true

System.out.println(isDoubloon("Lama")); // false

}

}

This example uses methods, if statements, recursive methods, arithmetic and

logical operators, integers, characters, strings, booleans, and arrays. We hope

8.8 Count of value 139

you’ll take a second to appreciate how much you’ve learned!

8.8 Count of value

Let’s look at this problem from CodingBat, available at https://codingbat.

com/prob/p135988

Recursion-1 array11

Given an array of ints, compute recursively the number of times

that the value 11 appears in the array.

array11([1, 2, 11], 0) → 1

array11([11, 11], 0) → 2

array11([1, 2, 3, 4], 0) → 0

This problem uses the convention of passing the index as an argument. So the

base case is when we’ve reached the end of the array. At that point, we know

there are no more 11s:

if (index >= nums.length) {

return 0;

}

Next we look at the current number (based on the given index), and check if

it’s an 11. After that, we can recursively check the rest of the array. Similar

to the noX problem, we look at only one integer per method call:

int recurse = array11(nums, index + 1);

if (nums[index] == 11) {

return recurse + 1;

} else {

return recurse;

}

Again, you can run this solution on CodingBat by pasting the snippets into

the method definition.

https://codingbat.com/prob/p135988
https://codingbat.com/prob/p135988

140 Chapter 8 Arrays and References

8.9 Vocabulary
update these

array: A collection of values in which all the values have the same type, and

each value is identified by an index.

element: One of the values in an array. The [] operator selects elements.

index: An integer variable or value used to indicate an element of an array.

allocate: To reserve memory for an array or other object. In Java, the new

operator allocates memory.

reference: A value that indicates a storage location. In a memory diagram,

a reference appears as an arrow.

alias: A variable that refers to the same object as another variable.

traversal: Looping through the elements of an array (or other collection).

search: A traversal pattern used to find a particular element of an array.

reduce: A traversal pattern that combines the elements of an array into a

single value.

accumulator: A variable used to accumulate results during a traversal.

deterministic: A program that does the same thing every time it is run.

nondeterministic: A program that always behaves differently, even when

run multiple times with the same input.

pseudorandom: A sequence of numbers that appear to be random but are

actually the product of a deterministic computation.

histogram: An array of integers in which each integer counts the number of

values that fall into a certain range.

enhanced for loop: An alternative syntax for traversing the elements of an

array (or other collection).

8.10 Exercises 141

8.10 Exercises

The code for this chapter is in the ch07 directory of ThinkJavaCode2. See

page xviii for instructions on how to download the repository. Before you

start the exercises, we recommend that you compile and run the examples.

If you haven’t already, take a look at Appendix D, where we’ve collected some

of our favorite debugging advice. It refers to language features we haven’t yet

covered, but it’s good for you to know what’s available when you need it.

Exercise 8.1 The purpose of this exercise is to practice reading code and

recognizing the traversal patterns in this chapter. The following methods are

hard to read, because instead of using meaningful names for the variables and

methods, they use names of fruit.

For each method, write one sentence that describes what the method does,

without getting into the details of how it works. And for each variable, identify

the role it plays.

public static int banana(int[] a) {

int kiwi = 1;

int i = 0;

while (i < a.length) {

kiwi = kiwi * a[i];

i++;

}

return kiwi;

}

public static int grapefruit(int[] a, int grape) {

for (int i = 0; i < a.length; i++) {

if (a[i] == grape) {

return i;

}

}

return -1;

}

142 Chapter 8 Arrays and References

public static int pineapple(int[] a, int apple) {

int pear = 0;

for (int pine: a) {

if (pine == apple) {

pear++;

}

}

return pear;

}

Exercise 8.2 What is the output of the following program? Describe in a

few words what mus does. Draw a stack diagram just before mus returns.

public static int[] make(int n) {

int[] a = new int[n];

for (int i = 0; i < n; i++) {

a[i] = i + 1;

}

return a;

}

public static void dub(int[] jub) {

for (int i = 0; i < jub.length; i++) {

jub[i] *= 2;

}

}

public static int mus(int[] zoo) {

int fus = 0;

for (int i = 0; i < zoo.length; i++) {

fus += zoo[i];

}

return fus;

}

public static void main(String[] args) {

int[] bob = make(5);

dub(bob);

System.out.println(mus(bob));

}

8.10 Exercises 143

Exercise 8.3 Write a method called indexOfMax that takes an array of

integers and returns the index of the largest element. Can you write this

method by using an enhanced for loop? Why or why not?

Exercise 8.4 The Sieve of Eratosthenes is “a simple, ancient algorithm for

finding all prime numbers up to any given limit” (https://en.wikipedia.

org/wiki/Sieve_of_Eratosthenes).

Write a method called sieve that takes an integer parameter, n, and returns

a boolean array that indicates, for each number from 0 to n - 1, whether the

number is prime.

Exercise 8.5 Write a method named areFactors that takes an integer n

and an array of integers, and returns true if the numbers in the array are all

factors of n (which is to say that n is divisible by all of them).

Exercise 8.6 Write a method named arePrimeFactors that takes an integer

n and an array of integers, and that returns true if the numbers in the array

are all prime and their product is n.

Exercise 8.7 Write a method called letterHist that takes a string as a

parameter and returns a histogram of the letters in the string. The zeroth

element of the histogram should contain the number of a’s in the string (upper-

and lowercase); the 25th element should contain the number of z’s. Your

solution should traverse the string only once.

Exercise 8.8 Many of the patterns you have seen for traversing arrays can

also be written recursively. It is not common, but it is a useful exercise.

1. Write a method called maxInRange that takes an array of integers and

two indexes, lowIndex and highIndex, and finds the maximum value

in the array, but considering only the elements between lowIndex and

highIndex, including both.

This method should be recursive. If the length of the range is 1 (i.e., if

lowIndex == highIndex), we know immediately that the sole element

in the range must be the maximum. So that’s the base case.

If there is more than one element in the range, we can break the array into

two pieces, find the maximum in each piece, and then find the maximum

of the maxima.

https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes
https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes

144 Chapter 8 Arrays and References

2. Methods like maxInRange can be awkward to use. To find the largest

element in an array, we have to provide the range for the entire array:

double max = maxInRange(a, 0, a.length - 1);

Write a method called max that takes an array and uses maxInRange to

find and return the largest element.

Exercise 8.9 Two words are anagrams if they contain the same letters and

the same number of each letter. For example, “stop” is an anagram of “pots”,

“allen downey” is an anagram of “well annoyed”, and “christopher mayfield”

is an anagram of “hi prof the camel is dry”. Write a method that takes two

strings and checks whether they are anagrams of each other.

Chapter 9

Loops

Computers are often used to automate repetitive tasks, such as searching for

text in documents. Repeating tasks without making errors is something that

computers do well and people do poorly.

Instead of using recursive methods (methods that call themselves), in this

chapter you will learn an iterative approach. You’ll learn how to use while

and for loops to add repetition to your code.

We have seen methods, like countdown and factorial, that use recursion

to iterate. Although recursion is elegant and powerful, it takes some getting

used to (but hopefully you’ve gotten used to it now). Java provides language

features that make iteration much easier: the while and for statements.

9.1 The while Statement

Using a while statement, we can repeat the same code multiple times:

int n = 3;

while (n > 0) {

System.out.println(n);

n = n - 1;

}

System.out.println("Blastoff!");

146 Chapter 9 Loops

Reading the code in English sounds like this: “Start with n set to 3. While n

is greater than 0, print the value of n, and reduce the value of n by 1. When

you get to 0, print Blastoff!”

The output is shown here:

3

2

1

Blastoff!

The flow of execution for a while statement is as follows:

1. Evaluate the condition in parentheses, yielding true or false.

2. If the condition is false, skip the following statements in braces.

3. If the condition is true, execute the statements and go back to step 1.

This type of flow is called a loop, because the last step “loops back around”

to the first. Figure 9.1 shows this idea using a flowchart.

Figure 9.1: Flow of execution for a while loop.

The body of the loop should change the value of one or more variables so that,

eventually, the condition becomes false and the loop terminates. Otherwise,

the loop will repeat forever, which is called an infinite loop:

int n = 3;

while (n > 0) {

System.out.println(n);

// n never changes

}

9.2 Increment and Decrement 147

This example will print the number 3 forever, or at least until you terminate

the program. An endless source of amusement for computer scientists is the

observation that the directions on shampoo, “Lather, rinse, repeat,” are an

infinite loop.

In the first example, we can prove that the loop terminates when n is positive.

But in general, it is not so easy to tell whether a loop terminates. For example,

this loop continues until n is 1 (which makes the condition false):

while (n != 1) {

System.out.println(n);

if (n % 2 == 0) { // n is even

n = n / 2;

} else { // n is odd

n = 3 * n + 1;

}

}

Each time through the loop, the program displays the value of n and then

checks whether it is even or odd. If it is even, the value of n is divided by 2.

If it is odd, the value is replaced by 3n+ 1. For example, if the starting value

is 3, the resulting sequence is 3, 10, 5, 16, 8, 4, 2, 1.

Since n sometimes increases and sometimes decreases, there is no obvious proof

that n will ever reach 1 and that the program will ever terminate. For some

values of n, such as the powers of two, we can prove that it terminates. The

previous example ends with such a sequence, starting when n is 16 (or 24).

The hard question is whether this program terminates for all values of n. So

far, no one has been able to prove it or disprove it! For more information, see

https://en.wikipedia.org/wiki/Collatz_conjecture.

9.2 Increment and Decrement

Here is another while loop example; this one displays the numbers 1 to 5:

https://en.wikipedia.org/wiki/Collatz_conjecture

148 Chapter 9 Loops

int i = 1;

while (i <= 5) {

System.out.println(i);

i++; // add 1 to i

}

Assignments like i = i + 1 don’t often appear in loops, because Java provides

a more concise way to add and subtract by one. Specifically, ++ is the

increment operator; it has the same effect as i = i + 1. And -- is the

decrement operator; it has the same effect as i = i - 1.

If you want to increment or decrement a variable by an amount other than 1,

you can use += and -=. For example, i += 2 increments i by 2:

int i = 2;

while (i <= 8) {

System.out.print(i + ", ");

i += 2; // add 2 to i

}

System.out.println("Who do we appreciate?");

And the output is as follows:

2, 4, 6, 8, Who do we appreciate?

9.3 The for Statement

The loops we have written so far have three parts in common. They start by

initializing a variable, they have a condition that depends on that variable,

and they do something inside the loop to update that variable.

Running the same code multiple times is called iteration. Methods that use

iteration are called iterative. It’s so common that there is another statement,

the for loop, that expresses it more concisely. For example, we can rewrite

the 2-4-6-8 loop this way:

for (int i = 2; i <= 8; i += 2) {

System.out.print(i + ", ");

}

System.out.println("Who do we appreciate?");

9.3 The for Statement 149

for loops have three components in parentheses, separated by semicolons: the

initializer, the condition, and the update:

1. The initializer runs once at the very beginning of the loop. It is equivalent

to the line before the while statement.

2. The condition is checked each time through the loop. If it is false, the

loop ends. Otherwise, the body of the loop is executed (again).

3. At the end of each iteration, the update runs, and we go back to step 2.

The for loop is often easier to read because it puts all the loop-related

statements at the top of the loop. Doing so allows you to focus on the

statements inside the loop body. Figure 9.2 illustrates for loops with a

flowchart.

Figure 9.2: Flow of execution for a for loop.

There is another difference between for loops and while loops: if you declare

a variable in the initializer, it exists only inside the for loop. For example:

for (int n = 3; n > 0; n--) {

System.out.println(n);

}

System.out.println("n is now " + n); // compiler error

The last line tries to display n (for no reason other than demonstration), but

it won’t work. If you need to use a loop variable outside the loop, you have to

declare it outside the loop, like this:

150 Chapter 9 Loops

int n;

for (n = 3; n > 0; n--) {

System.out.println(n);

}

System.out.println("n is now " + n);

Notice that the for statement does not say int n = 3. Rather, it simply

initializes the existing variable n.

9.4 Nested Loops

Like conditional statements, loops can be nested one inside the other. Nested

loops allow you to iterate over two variables. For example, we can generate a

“multiplication table” like this:

for (int x = 1; x <= 10; x++) {

for (int y = 1; y <= 10; y++) {

System.out.printf("%4d", x * y);

}

System.out.println();

}

Variables like x and y are called loop variables, because they control the

execution of a loop. In this example, the first loop (for x) is known as the

“outer loop”, and the second loop (for y) is known as the “inner loop”.

Each loop repeats its corresponding statements 10 times. The outer loop

iterates from 1 to 10 only once, but the inner loop iterates from 1 to 10 each

of those 10 times. As a result, the printf method is invoked 100 times.

The format specifier %4d displays the value of x * y padded with spaces so it’s

four characters wide. Doing so causes the output to align vertically, regardless

of how many digits the numbers have:

9.5 Characters 151

1 2 3 4 5 6 7 8 9 10

2 4 6 8 10 12 14 16 18 20

3 6 9 12 15 18 21 24 27 30

4 8 12 16 20 24 28 32 36 40

5 10 15 20 25 30 35 40 45 50

6 12 18 24 30 36 42 48 54 60

7 14 21 28 35 42 49 56 63 70

8 16 24 32 40 48 56 64 72 80

9 18 27 36 45 54 63 72 81 90

10 20 30 40 50 60 70 80 90 100

It’s important to realize that the output is displayed row by row. The inner

loop displays a single row of output, followed by a newline. The outer loop

iterates over the rows themselves. Another way to read nested loops, like the

ones in this example, is: “For each row x, and for each column y, . . . ”

9.5 Characters

Some of the most interesting problems in computer science involve searching

and manipulating text. In the next few sections, we’ll discuss how to apply

loops to strings. Although the examples are short, the techniques work the

same whether you have one word or one million words.

Remember that strings provide a method named charAt. It returns a char, a

data type that stores an individual character (as opposed to strings of them):

String fruit = "banana";

char letter = fruit.charAt(0);

The argument 0 means that we want the character at index 0. String indexes

range from 0 to n − 1, where n is the length of the string. So the character

assigned to letter is 'b':

b a n a n a

0 1 2 3 4 5

We have seen that characters work like the other data types you have seen.

Recall that you can compare them using relational operators:

152 Chapter 9 Loops

if (letter == 'A') {

System.out.println("It's an A!");

}

Character literals, like 'A', appear in single quotes. Unlike string literals,

which appear in double quotes, character literals can contain only a single

character. Escape sequences, like '\t', are legal because they represent a

single character.

The increment and decrement operators also work with characters. So this

loop displays the letters of the alphabet:

System.out.print("Roman alphabet: ");

for (char c = 'A'; c <= 'Z'; c++) {

System.out.print(c);

}

System.out.println();

The output is shown here:

ABCDEFGHIJKLMNOPQRSTUVWXYZ

Java uses Unicode to represent characters, so strings can store text in other

alphabets like Cyrillic and Greek, and non-alphabetic languages like Chinese.

You can read more about it at the Unicode website (https://unicode.org/).

In Unicode, each character is represented by a “code point”, which you can

think of as an integer. The code points for uppercase Greek letters run from

913 to 937, so we can display the Greek alphabet like this:

System.out.print("Greek alphabet: ");

for (int i = 913; i <= 937; i++) {

System.out.print((char) i);

}

System.out.println();

This example uses a type cast to convert each integer (in the range) to the

corresponding character. Try running the code and see what happens.

https://unicode.org/

9.6 Which Loop to Use 153

9.6 Which Loop to Use

for and while loops have the same capabilities; any for loop can be rewritten

as a while loop, and vice versa. For example, we could have printed letters of

the alphabet by using a while loop:

System.out.print("Roman alphabet: ");

char c = 'A';

while (c <= 'Z') {

System.out.print(c);

c++;

}

System.out.println();

You might wonder when to use one or the other. It depends on whether you

know how many times the loop will repeat.

A for loop is “definite”, which means we know, at the beginning of the loop,

how many times it will repeat. In the alphabet example, we know it will run

26 times. In that case, it’s better to use a for loop, which puts all of the loop

control code on one line.

A while loop is “indefinite”, which means we don’t know how many times it

will repeat. For example, when validating user input as in Section 5.9, it’s

impossible to know how many times the user will enter a wrong value. In this

case, a while loop is more appropriate:

System.out.print("Enter a number: ");

while (!in.hasNextDouble()) {

String word = in.next();

System.err.println(word + " is not a number");

System.out.print("Enter a number: ");

}

double number = in.nextDouble();

It’s easier to read the Scanner method calls when they’re not all on one line

of code.

154 Chapter 9 Loops

9.7 String Iteration

Strings provide a method called length that returns the number of characters

in the string. The following loop iterates the characters in fruit and displays

them, one on each line:

for (int i = 0; i < fruit.length(); i++) {

char letter = fruit.charAt(i);

System.out.println(letter);

}

Because length is a method, you have to invoke it with parentheses (there

are no arguments). When i is equal to the length of the string, the condition

becomes false and the loop terminates.

To find the last letter of a string, you might be tempted to do something like

the following:

int length = fruit.length();

char last = fruit.charAt(length); // wrong!

This code compiles and runs, but invoking the charAt method throws a

StringIndexOutOfBoundsException. The problem is that there is no sixth

letter in "banana". Since we started counting at 0, the six letters are indexed

from 0 to 5. To get the last character, you have to subtract 1 from length:

int length = fruit.length();

char last = fruit.charAt(length - 1); // correct

Many string algorithms involve reading one string and building another. For

example, to reverse a string, we can concatenate one character at a time:

public static String reverse(String s) {

String r = "";

for (int i = s.length() - 1; i >= 0; i--) {

r += s.charAt(i);

}

return r;

}

The initial value of r is "", which is an empty string. The loop iterates the

indexes of s in reverse order. Each time through the loop, the += operator

9.8 Array Iteration 155

appends the next character to r. When the loop exits, r contains the characters

from s in reverse order. So the result of reverse("banana") is "ananab".

9.8 Array Iteration

You can also iterate through an array using a loop. For example:

counts[0] = 7;

counts[1] = counts[0] * 2;

counts[2]++;

counts[3] -= 60;

int i = 0;

while (i < 4) {

System.out.println(counts[i]);

i++;

}

This while loop counts up from 0 to 4. When i is 4, the condition fails and

the loop terminates. So the body of the loop is executed only when i is 0, 1,

2, or 3. In this context, the variable name i is short for “index”.

Each time through the loop, we use i as an index into the array, displaying

the ith element. This type of array processing is usually written as a for loop:

for (int i = 0; i < 4; i++) {

System.out.println(counts[i]);

}

If the stop condition was <= 4, rather than < 4, what do you think would

happen when we try to access the element in the index 4 in the loop?

The result would be an ArrayIndexOutOfBoundsException

You can also use a loop to copy an array:

double[] b = new double[3];

for (int i = 0; i < 3; i++) {

b[i] = a[i];

}

156 Chapter 9 Loops

The examples so far work only if the array has three elements. It is better

to generalize the code to work with arrays of any size. We can do that by

replacing the magic number, 3, with a.length:

double[] b = new double[a.length];

for (int i = 0; i < a.length; i++) {

b[i] = a[i];

}

Another common pattern is a search, which involves traversing an array and

“searching” for a particular element. For example, the following method takes

an array and a value, and it returns the index where the value appears:

public static int search(double[] array, double target) {

for (int i = 0; i < array.length; i++) {

if (array[i] == target) {

return i;

}

}

return -1; // not found

}

If we find the target value in the array, we return its index immediately. If the

loop exits without finding the target, it returns -1, a special value chosen to

indicate a failed search. (This code is essentially what the String.indexOf

method does.)

The following code searches an array for the value 1.23, which is the third

element. Because array indexes start at 0, the output is 2:

double[] array = {3.14, -55.0, 1.23, -0.8};

int index = search(array, 1.23);

System.out.println(index);

Another common traversal is a reduce operation, which “reduces” an array

of values down to a single value. Examples include the sum or product of the

elements, the minimum, and the maximum. The following method takes an

array and returns the sum of its elements:

9.9 Building a Histogram 157

public static double sum(double[] array) {

double total = 0.0;

for (int i = 0; i < array.length; i++) {

total += array[i];

}

return total;

}

Before the loop, we initialize total to 0. Each time through the loop, we

update total by adding one element from the array. At the end of the loop,

total contains the sum of the elements. A variable used this way is sometimes

called an accumulator, because it “accumulates” the running total.

9.9 Building a Histogram

If these values were exam scores—and they would be pretty bad exam scores

in that case—the teacher might present them to the class in the form of a

histogram. In statistics, a histogram is a set of counters that keeps track of

the number of times each value appears.

For exam scores, we might have 10 counters to keep track of how many students

scored in the 90s, the 80s, etc. To do that, we can traverse the array and count

the number of elements that fall in a given range.

The following method takes an array and two integers. It returns the number

of elements that fall in the range from low to high - 1:

public static int inRange(int[] a, int low, int high) {

int count = 0;

for (int i = 0; i < a.length; i++) {

if (a[i] >= low && a[i] < high) {

count++;

}

}

return count;

}

158 Chapter 9 Loops

This pattern should look familiar: it is another reduce operation. Notice that

low is included in the range (>=), but high is excluded (<). This design keeps

us from counting any scores twice.

Now we can count the number of scores in each grade range. We add the

following code to our main method:

int[] scores = randomArray(30);

int a = inRange(scores, 90, 100);

int b = inRange(scores, 80, 90);

int c = inRange(scores, 70, 80);

int d = inRange(scores, 60, 70);

int f = inRange(scores, 0, 60);

This code is repetitive, but it is acceptable as long as the number of ranges is

small. Suppose we wanted to keep track of the number of times each individual

score appears. Then we would have to write 100 lines of code:

int count0 = inRange(scores, 0, 1);

int count1 = inRange(scores, 1, 2);

int count2 = inRange(scores, 2, 3);

...

int count99 = inRange(scores, 99, 100);

What we need is a way to store 100 counters, preferably so we can use an

index to access them. Wait a minute—that’s exactly what an array does.

The following fragment creates an array of 100 counters, one for each possible

score. It loops through the scores and uses inRange to count how many times

each score appears. Then it stores the results in the counts array:

int[] counts = new int[100];

for (int i = 0; i < counts.length; i++) {

counts[i] = inRange(scores, i, i + 1);

}

Notice that we are using the loop variable i three times: as an index into the

counts array, and in the last two arguments of inRange.

The code works, but it is not as efficient as it could be. Every time the loop

invokes inRange, it traverses the entire array. It would be better to make a

single pass through the scores array.

9.10 The Enhanced for Loop 159

For each score, we already know which range it falls in—the score itself. We

can use that value to increment the corresponding counter. This code traverses

the array of scores only once to generate the histogram:

int[] counts = new int[100];

for (int i = 0; i < scores.length; i++) {

int index = scores[i];

counts[index]++;

}

Each time through the loop, it selects one element from scores and uses it

as an index to increment the corresponding element of counts. Because this

code traverses the array of scores only once, it is much more efficient.

9.10 The Enhanced for Loop

Since traversing arrays is so common, Java provides an alternative syntax that

makes the code more compact. Consider a for loop that displays the elements

of an array on separate lines:

for (int i = 0; i < values.length; i++) {

int value = values[i];

System.out.println(value);

}

We could rewrite the loop like this:

for (int value : values) {

System.out.println(value);

}

This statement is called an enhanced for loop, also known as the “for each”

loop. You can read the code as, “for each value in values”. It’s conventional

to use plural nouns for array variables and singular nouns for element variables.

Notice how the single line for (int value : values) replaces the first two

lines of the standard for loop. It hides the details of iterating each index of

the array, and instead, focuses on the values themselves.

160 Chapter 9 Loops

Using the enhanced for loop, and removing the temporary variable, we can

write the histogram code from the previous section more concisely:

int[] counts = new int[100];

for (int score : scores) {

counts[score]++;

}

Enhanced for loops often make the code more readable, especially for accumulating

values. But they are not helpful when you need to refer to the index, as in

search operations:

for (double d : array) {

if (d == target) {

// array contains d, but we don't know where

}

}

9.11 Vocabulary

loop: A statement that executes a sequence of statements repeatedly.

loop body: The statements inside the loop.

infinite loop: A loop whose condition is always true.

iterative: A method or algorithm that repeats steps by using one or more

loops.

increment: Increase the value of a variable.

decrement: Decrease the value of a variable.

iteration: Executing a sequence of statements repeatedly.

loop variable: A variable that is initialized, tested, and updated in order to

control a loop.

9.12 Exercises 161

9.12 Exercises

The code for this chapter is in the ch06 directory of ThinkJavaCode2. See

page xviii for instructions on how to download the repository. Before you

start the exercises, we recommend that you compile and run the examples.

If you have not already read Appendix A.6, now might be a good time. It

describes the DrJava debugger, which is a useful tool for visualizing the flow

of execution through loops.

Exercise 9.1 Consider the following methods (main and loop):

1. Draw a table that shows the value of the variables i and n during the

execution of loop. The table should contain one column for each variable

and one line for each iteration.

2. What is the output of this program?

3. Can you prove that this loop terminates for any positive value of n?

public static void main(String[] args) {

loop(10);

}

public static void loop(int n) {

int i = n;

while (i > 1) {

System.out.println(i);

if (i % 2 == 0) {

i = i / 2;

} else {

i = i + 1;

}

}

}

Exercise 9.2 Let’s say you are given a number, a, and you want to find

its square root. One way to do that is to start with a rough guess about the

answer, x0, and then improve the guess by using this formula:

x1 = (x0 + a/x0)/2

162 Chapter 9 Loops

For example, if we want to find the square root of 9, and we start with x0 = 6,

then x1 = (6 + 9/6)/2 = 3.75, which is closer. We can repeat the procedure,

using x1 to calculate x2, and so on. In this case, x2 = 3.075 and x3 = 3.00091.

So the repetition converges quickly on the correct answer.

Write a method called squareRoot that takes a double and returns an approximation

of the square root of the parameter, using this technique. You should not use

Math.sqrt.

As your initial guess, you should use a/2. Your method should iterate until

it gets two consecutive estimates that differ by less than 0.0001. You can use

Math.abs to calculate the absolute value of the difference.

Exercise 9.3 One way to evaluate exp(−x2) is to use the infinite series

expansion:

exp(−x2) = 1− x2 + x4/2− x6/6 + . . .

The ith term in this series is (−1)ix2i/i!. Write a method named gauss that

takes x and n as arguments and returns the sum of the first n terms of the

series. You should not use factorial or pow.

Exercise 9.4 A word is said to be “abecedarian” if the letters in the word

appear in alphabetical order. For example, the following are all six-letter

English abecedarian words:

abdest, acknow, acorsy, adempt, adipsy, agnosy, befist, behint,

beknow, bijoux, biopsy, cestuy, chintz, deflux, dehors, dehort, deinos,

diluvy, dimpsy

Write a method called isAbecedarian that takes a String and returns a

boolean indicating whether the word is abecedarian.

Exercise 9.5 A word is said to be a “doubloon” if every letter that appears

in the word appears exactly twice. Here are some example doubloons found

in the dictionary:

Abba, Anna, appall, appearer, appeases, arraigning, beriberi, bilabial,

boob, Caucasus, coco, Dada, deed, Emmett, Hannah, horseshoer,

intestines, Isis, mama, Mimi, murmur, noon, Otto, papa, peep,

reappear, redder, sees, Shanghaiings, Toto

9.12 Exercises 163

Write a method called isDoubloon that takes a string and checks whether it is

a doubloon. To ignore case, invoke the toLowerCase method before checking.

Exercise 9.6 In Scrabble1 each player has a set of tiles with letters on them.

The object of the game is to use those letters to spell words. The scoring system

is complex, but longer words are usually worth more than shorter words.

Imagine you are given your set of tiles as a string, like "quijibo", and you

are given another string to test, like "jib".

Write a method called canSpell that takes two strings and checks whether

the set of tiles can spell the word. You might have more than one tile with

the same letter, but you can use each tile only once.

1Scrabble is a registered trademark owned in the USA and Canada by Hasbro Inc., and
in the rest of the world by J. W. Spear & Sons Limited of Maidenhead, Berkshire, England,
a subsidiary of Mattel Inc.

164 Chapter 9 Loops

Chapter 10

Immutable Objects

Java is an object-oriented language, which means that it uses objects to

(1) represent data and (2) provide methods related to them. This way of

organizing programs is a powerful design concept, and we will introduce it

gradually throughout the remainder of the book.

An object is a collection of data that provides a set of methods. For example,

Scanner, which you saw in Section 3.2, is an object that provides methods for

parsing input. System.out and System.in are also objects.

Strings are objects, too. They contain characters and provide methods for

manipulating character data. Other data types, like Integer, contain numbers

and provide methods for manipulating number data. We will explore some of

these methods in this chapter.

10.1 Primitives vs Objects

Not everything in Java is an object: int, double, char, and boolean are

primitive types. When you declare a variable with a primitive type, Java

reserves a small amount of memory to store its value. Figure 10.1 shows how

the following values are stored in memory:

int number = -2;

char symbol = '!';

166 Chapter 10 Immutable Objects

number

symbol

−2

!

Figure 10.1: Memory diagram of two primitive variables.

As you learned in Section 8.2, an array variable stores a reference to an array.

For example, the following line declares a variable named array and creates

an array of three characters:

char[] array = {'c', 'a', 't'};

Figure 10.2 shows them both, with a box to represent the location of the

variable and an arrow pointing to the location of the array.

0 1 2

array a t c

Figure 10.2: Memory diagram of an array of characters.

Objects work in a similar way. For example, this line declares a String variable

named word and creates a String object, as shown in Figure 10.3:

String word = "dog";

word

String

"dog"

Figure 10.3: Memory diagram of a String object.

Objects and arrays are usually created with the new keyword, which allocates

memory for them. For convenience, you don’t have to use new to create strings:

String word1 = new String("dog"); // creates a string object

String word2 = "dog"; // implicitly creates a string object

Recall from Section 7.6 that you need to use the equals method to compare

strings. The equals method traverses the String objects and tests whether

they contain the same characters.

10.2 The null Keyword 167

To test whether two integers or other primitive types are equal, you can simply

use the == operator. But two String objects with the same characters would

not be considered equal in the == sense. The == operator, when applied to

string variables, tests only whether they refer to the same object.

10.2 The null Keyword

Often when you declare an object variable, you assign it to reference an object.

But sometimes you want to declare a variable that doesn’t refer to an object,

at least initially.

In Java, the keyword null is a special value that means “no object”. You can

initialize object and array variables this way:

String name = null;

int[] combo = null;

The value null is represented in memory diagrams by a small box with no

arrow, as in Figure 10.4.

name

combo

Figure 10.4: Memory diagram showing variables that are null.

If you try to use a variable that is null by invoking a method or accessing an

element, Java throws a NullPointerException:

System.out.println(name.length()); // NullPointerException

System.out.println(combo[0]); // NullPointerException

On the other hand, it is perfectly fine to pass a null reference as an argument

to a method, or to receive one as a return value. In these situations, null is

often used to represent a special condition or indicate an error.

168 Chapter 10 Immutable Objects

10.3 Strings Are Immutable

If the Java library didn’t have a String class, we would have to use character

arrays to store and manipulate text. Operations like concatenation (+), indexOf,

and substring would be difficult and inconvenient. Fortunately, Java does

have a String class that provides these and other methods.

For example, the methods toLowerCase and toUpperCase convert uppercase

letters to lowercase, and vice versa. These methods are often a source of

confusion, because it sounds like they modify strings. But neither these

methods nor any others can change a string, because strings are immutable.

When you invoke toUpperCase on a string, you get a new String object as a

result. For example:

String name = "Karen Sparck Jones";

String upperName = name.toUpperCase();

After these statements run, upperName refers to the string "KAREN SPKARCK JONES".

But name still refers to "Karen Sparck Jones".1 A common mistake is to

assume that toUpperCase somehow affects the original string:

String name = "Karen Sparck Jones";

name.toUpperCase(); // ignores the return value

System.out.println(name);

The previous code displays "Karen Sparck Jones", because the value of name,

which refers to the original String object, never changes. If you want to

change name to be uppercase, then you need to assign the return value:

String name = "Karen Sparck Jones";

name = name.toUpperCase(); // references the new string

System.out.println(name);

A similar method is replace, which finds and replaces instances of one string

within another. This example replaces "Computer Science" with "CS":

String text = "Computer Science is fun!";

text = text.replace("Computer Science", "CS");

1Karen Sparck Jones developed the algorithm that powers most search enginers https:
//www.nytimes.com/2019/01/02/obituaries/karen-sparck-jones-overlooked.html.

https://www.nytimes.com/2019/01/02/obituaries/karen-sparck-jones-overlooked.html
https://www.nytimes.com/2019/01/02/obituaries/karen-sparck-jones-overlooked.html

10.4 Wrapper Classes 169

As with toUpperCase, assigning the return value (to text) is important. If

you don’t assign the return value, invoking text.replace has no effect.

Strings are immutable by design, because it simplifies passing them as parameters

and return values. And since the contents of a string can never change, two

variables can reference the same string without one accidentally corrupting

the other.

10.4 Wrapper Classes

Primitive types like int, double, and char cannot be null, and they do not

provide methods. For example, you can’t invoke equals on an int:

int i = 5;

System.out.println(i.equals(5)); // compiler error

But for each primitive type, there is a corresponding wrapper class in the

Java library. The wrapper class for int is named Integer, with a capital I:

Integer i = Integer.valueOf(5);

System.out.println(i.equals(5)); // displays true

Other wrapper classes include Boolean, Character, Double, and Long. They

are in the java.lang package, so you can use them without importing them.

Like strings, objects from wrapper classes are immutable, and you have to use

the equals method to compare them:

Integer x = Integer.valueOf(123);

Integer y = Integer.valueOf(123);

if (x == y) { // false

System.out.println("x and y are the same object");

}

if (x.equals(y)) { // true

System.out.println("x and y have the same value");

}

Because x and y refer to different objects, this code displays only “x and y

have the same value”.

170 Chapter 10 Immutable Objects

Each wrapper class defines the constants MIN_VALUE and MAX_VALUE. For

example, Integer.MIN_VALUE is -2147483648, and Integer.MAX_VALUE is

2147483647. Because these constants are available in wrapper classes, you

don’t have to remember them, and you don’t have to write them yourself.

Wrapper classes also provide methods for converting strings to and from

primitive types. For example, Integer.parseInt converts a string to an int.

In this context, parse means “read and translate”.

String str = "12345";

int num = Integer.parseInt(str);

Other wrapper classes provide similar methods, like Double.parseDouble and

Boolean.parseBoolean. They also provide toString, which returns a string

representation of a value:

int num = 12345;

String str = Integer.toString(num);

The result is the String object "12345".

It’s always possible to convert a primitive value to a string, but not the other

way around. For example, say we try to parse an invalid string like this:

String str = "five";

int num = Integer.parseInt(str); // NumberFormatException

parseInt throws a NumberFormatException, because the characters in the

string "five" are not digits.

10.5 Command-Line Arguments

Now that you know about strings, arrays, and wrapper classes, we can finally

explain the args parameter of the main method, which we have been ignoring

since Chapter 1. If you are unfamiliar with the command-line interface, please

read Appendix A.3.

Let’s write a program to find the maximum value in a sequence of numbers.

Rather than read the numbers from System.in by using a Scanner, we’ll pass

them as command-line arguments. Here is a starting point:

10.5 Command-Line Arguments 171

import java.util.Arrays;

public class Max {

public static void main(String[] args) {

System.out.println(Arrays.toString(args));

}

}

You can run this program from the command line by typing this:

java Max

The output indicates that args is an empty array; that is, it has no elements:

[]

If you provide additional values on the command line, they are passed as

arguments to main. For example, say you run the program like this:

java Max 10 -3 55 0 14

The output is shown here:

[10, -3, 55, 0, 14]

It’s not clear from the output, but the elements of args are strings. So args is

the array {"10", "-3", "55", "0", "14"}. To find the maximum number,

we have to convert the arguments to integers.

The following code uses an enhanced for loop (see Section 9.10) to parse the

arguments and find the largest value:

int max = Integer.MIN_VALUE;

for (String arg : args) {

int value = Integer.parseInt(arg);

if (value > max) {

max = value;

}

}

System.out.println("The max is " + max);

We begin by initializing max to the smallest (most negative) number an int

can represent. That way, the first value we parse will replace max. As we find

larger values, they will replace max as well.

172 Chapter 10 Immutable Objects

If args is empty, the result will be MIN_VALUE. We can prevent this situation

from happening by checking args at the beginning of the program:

if (args.length == 0) {

System.err.println("Usage: java Max <numbers>");

return;

}

It’s customary for programs that require command-line arguments to display

a “usage” message if the arguments are not valid. For example, if you run

javac or java from the command line without any arguments, you will get a

very long message.

10.6 Argument Validation

As we discussed in Section 5.9, you should never assume that program input

will be in the correct format. Sometimes users make mistakes, such as pressing

the wrong key or misreading instructions.

Or even worse, someone might make intentional “mistakes” to see what your

program will do. One way hackers break into computer systems is by entering

malicious input that causes a program to fail.

Programmers can make mistakes too. It’s difficult to write bug-free software,

especially when working in teams on large projects.

For all of these reasons, it’s good practice to validate arguments passed to

methods, including the main method. In the previous section, we did this by

ensuring that args.length was not 0.

As a further example, consider a method that checks whether the first word

of a sentence is capitalized. We can write this method using the Character

wrapper class:

public static boolean isCapitalized(String str) {

return Character.isUpperCase(str.charAt(0));

}

The expression str.charAt(0) makes two assumptions: the string object

referenced by str exists, and it has at least one character. What if these

assumptions don’t hold at run-time?

10.6 Argument Validation 173

� If str is null, invoking charAt will cause a NullPointerException,

because you can’t invoke a method on null.

� If str refers to an empty string, which is a String object with no

characters, charAt will cause a StringIndexOutOfBoundsException,

because there is no character at index 0.

We can prevent these exceptions by validating str at the start of the method.

If it’s invalid, we return before executing the rest of the method:

public static boolean isCapitalized(String str) {

if (str == null || str.isEmpty()) {

return false;

}

return Character.isUpperCase(str.charAt(0));

}

Notice that null and empty are different concepts, as shown in Figure 10.5.

The variable str1 is null, meaning that it doesn’t reference an object. The

variable str2 refers to the empty string, an object that exists.

String

str1

str2 ""

Figure 10.5: Memory diagram of null and empty string.

Beginners sometimes make the mistake of checking for empty first. Doing

so causes a NullPointerException, because you can’t invoke methods on

variables that are null:

if (str.isEmpty() || str == null) { // wrong!

Checking for null first prevents the NullPointerException. If str is null,

the || operator will short circuit (see Section 5.5) and evaluate to true

immediately. As a result, str.isEmpty() will not be called.

174 Chapter 10 Immutable Objects

10.7 BigInteger Arithmetic

It might not be clear at this point why you would ever need an integer object

when you can just use an int or long. One advantage is the variety of methods

that Integer and Long provide. But there is another reason: when you need

very large integers that exceed Long.MAX_VALUE.

BigInteger is a Java class that can represent arbitrarily large integers. There

is no upper bound except the limitations of memory size and processing speed.

Take a minute to read the documentation, which you can find by doing a web

search for “Java BigInteger”.

To use BigIntegers, you have to import java.math.BigInteger at the beginning

of your program. There are several ways to create a BigInteger, but the

simplest uses valueOf. The following code converts a long to a BigInteger:

long x = 17;

BigInteger big = BigInteger.valueOf(x);

You can also create BigIntegers from strings. For example, here is a 20-digit

integer that is too big to store using a long:

String s = "12345678901234567890";

BigInteger bigger = new BigInteger(s);

Notice the difference in the previous two examples: you use valueOf to convert

integers, and new BigInteger to convert strings.

Since BigIntegers are not primitive types, the usual math operators don’t work.

Instead, we have to use methods like add. To add two BigIntegers, we invoke

add on one and pass the other as an argument:

BigInteger a = BigInteger.valueOf(17);

BigInteger b = BigInteger.valueOf(1700000000);

BigInteger c = a.add(b);

Like strings, BigInteger objects are immutable. Methods like add, multiply,

and pow all return new BigIntegers, rather than modify an existing one.

Internally, a BigInteger is implemented using an array of ints, similar to the

way a string is implemented using an array of chars. Each int in the array

10.8 Incremental Design 175

stores a portion of the BigInteger. The methods of BigInteger traverse this

array to perform addition, multiplication, etc.

For very long floating-point values, take a look at java.math.BigDecimal.

Interestingly, BigDecimal objects represent floating-point numbers internally

by using a BigInteger!

10.8 Incremental Design

One challenge of programming, especially for beginners, is figuring out how to

divide a program into methods. In this section, we present a design process

that allows you to divide a program into methods as you go along. The process

is called “encapsulation and generalization”. The essential steps are as follows:

1. Write a few lines of code in main or another method, and test them.

2. When they are working, wrap them in a new method and test again.

3. If it’s appropriate, replace literal values with variables and parameters.

To demonstrate this process, we’ll develop methods that display multiplication

tables. We begin by writing and testing a few lines of code. Here is a loop

that displays the multiples of two, all on one line:

for (int i = 1; i <= 6; i++) {

System.out.printf("%4d", 2 * i);

}

System.out.println();

Each time through the loop, we display the value of 2 * i, padded with spaces

so it’s four characters wide. Since we use System.out.printf, the output

appears on a single line.

After the loop, we call println to print a newline character. Remember that in

some environments, none of the output is displayed until the line is complete.

The output of the code so far is shown here:

2 4 6 8 10 12

176 Chapter 10 Immutable Objects

The next step is to encapsulate the code; that is, we “wrap” the code in a

method:

public static void printRow() {

for (int i = 1; i <= 6; i++) {

System.out.printf("%4d", 2 * i);

}

System.out.println();

}

Finally, we generalize the method to print multiples of other numbers by

replacing the constant value 2 with a parameter n. This step is called “generalization”,

because it makes the method more general (less specific):

public static void printRow(int n) {

for (int i = 1; i <= 6; i++) {

System.out.printf("%4d", n * i); // generalized n

}

System.out.println();

}

Invoking this method with the argument 2 yields the same output as before.

With the argument 3, the output is as follows:

3 6 9 12 15 18

By now, you can probably guess how we are going to display a multiplication

table: we’ll invoke printRow repeatedly with different arguments. In fact,

we’ll use another loop to iterate through the rows:

for (int i = 1; i <= 6; i++) {

printRow(i);

}

And the output looks like this:

1 2 3 4 5 6

2 4 6 8 10 12

3 6 9 12 15 18

4 8 12 16 20 24

5 10 15 20 25 30

6 12 18 24 30 36

10.9 More Generalization 177

10.9 More Generalization

The previous result is similar to the “nested loops” approach in Section 9.4.

However, the inner loop is now encapsulated in the printRow method. We can

encapsulate the outer loop in a method too:

public static void printTable() {

for (int i = 1; i <= 6; i++) {

printRow(i);

}

}

The initial version of printTable always displays six rows. We can generalize

it by replacing the literal 6 with a parameter:

public static void printTable(int rows) {

for (int i = 1; i <= rows; i++) { // generalized rows

printRow(i);

}

}

Here is the output of printTable(7):

1 2 3 4 5 6

2 4 6 8 10 12

3 6 9 12 15 18

4 8 12 16 20 24

5 10 15 20 25 30

6 12 18 24 30 36

7 14 21 28 35 42

That’s better, but it always displays the same number of columns. We can

generalize more by adding a parameter to printRow:

public static void printRow(int n, int cols) {

for (int i = 1; i <= cols; i++) { // generalized cols

System.out.printf("%4d", n * i);

}

System.out.println();

}

178 Chapter 10 Immutable Objects

Now printRow takes two parameters: n is the value whose multiples should be

displayed, and cols is the number of columns. Since we added a parameter to

printRow, we also have to change the line in printTable where it is invoked:

public static void printTable(int rows) {

for (int i = 1; i <= rows; i++) {

printRow(i, rows);

}

}

When this line executes, it evaluates rows and passes the value, which is 7 in

this example, as an argument. In printRow, this value is assigned to cols. As

a result, the number of columns equals the number of rows, so we get a square

7 x 7 table, instead of the previous 7 x 6 table.

When you generalize a method appropriately, you often find that it has capabilities

you did not plan. For example, you might notice that the multiplication table

is symmetric. Since ab = ba, all the entries in the table appear twice. You

could save ink by printing half of the table, and you would have to change

only one line of printTable:

printRow(i, i); // using i for both n and cols

This means the length of each row is the same as its row number. The result

is a triangular multiplication table:

1

2 4

3 6 9

4 8 12 16

5 10 15 20 25

6 12 18 24 30 36

7 14 21 28 35 42 49

Generalization makes code more versatile, more likely to be reused, and sometimes

easier to write.

10.10 Vocabulary

object-oriented: A way of organizing code and data into objects, rather than

independent methods.

10.11 Exercises 179

object: A collection of related data that comes with a set of methods that

operate on the data.

primitive: A data type that stores a single value and provides no methods.

immutable: An object that, once created, cannot be modified. Strings are

immutable by design.

wrapper class: Classes in java.lang that provide constants and methods

for working with primitive types.

parse: In Chapter 2, we defined parse as what the compiler does to analyze

a program. Now you know that it means to read a string and interpret

or translate it.

empty array: An array with no elements and a length of zero.

design process: A process for determining what methods a class or program

should have.

encapsulate: To wrap data inside an object, or to wrap statements inside a

method.

generalize: To replace something unnecessarily specific (like a constant value)

with something appropriately general (like a variable or parameter).

10.11 Exercises

The code for this chapter is in the ch09 directory of ThinkJavaCode2. See

page xviii for instructions on how to download the repository. Before you

start the exercises, we recommend that you compile and run the examples.

Exercise 10.1 The point of this exercise is to explore Java types and fill in

some of the details that aren’t covered in the chapter.

1. Create a new program named Test.java and write a main method that

contains expressions that combine various types using the + operator.

For example, what happens when you “add” a String and a char?

Does it perform character addition or string concatenation? What is the

type of the result?

180 Chapter 10 Immutable Objects

2. Make a bigger copy of the following table and fill it in. At the intersection

of each pair of types, you should indicate whether it is legal to use the +

operator with these types, the operation that is performed (addition or

concatenation), and the type of the result.

boolean char int double String

boolean

char

int

double

String

3. Think about some of the choices the designers of Java made, based on

this table. How many of the entries seem unavoidable, as if there was no

other choice? How many seem like arbitrary choices from several equally

reasonable possibilities? Which entries seem most problematic?

4. Here’s a puzzler: normally, the statement x++ is exactly equivalent to

x = x + 1. But if x is a char, it’s not exactly the same! In that case,

x++ is legal, but x = x + 1 causes an error. Try it out. See what the

error message is, and then see if you can figure out what is going on.

5. What happens when you add "" (the empty string) to the other types;

for example, "" + 5?

Exercise 10.2 You might be sick of the factorial method by now, but

we’re going to do one more version.

1. Create a new program called Big.java and write an iterative version of

factorial (using a for loop).

2. Display a table of the integers from 0 to 30 along with their factorials.

At some point around 15, you will probably see that the answers are not

correct anymore. Why not?

3. Convert factorial so that it performs its calculation using BigIntegers

and returns a BigInteger as a result. You can leave the parameter

alone; it will still be an integer.

10.11 Exercises 181

4. Try displaying the table again with your modified factorial method. Is

it correct up to 30? How high can you make it go?

Exercise 10.3 Many encryption algorithms depend on the ability to raise

large integers to a power. Here is a method that implements an efficient

algorithm for integer exponentiation:

public static int pow(int x, int n) {

if (n == 0) return 1;

// find x to the n/2 recursively

int t = pow(x, n / 2);

// if n is even, the result is t squared

// if n is odd, the result is t squared times x

if (n % 2 == 0) {

return t * t;

} else {

return t * t * x;

}

}

The problem with this method is that it works only if the result is small enough

to be represented by an int. Rewrite it so that the result is a BigInteger.

The parameters should still be integers, though.

You should use the BigInteger methods add and multiply. But don’t use

BigInteger.pow; that would spoil the fun.

Exercise 10.4 One way to calculate ex is to use the following infinite series

expansion. The ith term in the series is xi/i!.

ex = 1 + x+ x2/2! + x3/3! + x4/4! + . . .

1. Write a method called myexp that takes x and n as parameters and

estimates ex by adding the first n terms of this series. You can use the

factorial method from Section 6.3 or your iterative version from the

previous exercise.

182 Chapter 10 Immutable Objects

2. You can make this method more efficient by observing that the numerator

of each term is the same as its predecessor multiplied by x, and the

denominator is the same as its predecessor multiplied by i.

Use this observation to eliminate the use of Math.pow and factorial,

and check that you get the same result.

3. Write a method called check that takes a parameter, x, and displays x,

myexp(x), and Math.exp(x). The output should look like this:

1.0 2.708333333333333 2.718281828459045

Use the escape sequence '\t' to display a tab character between each

of the values.

4. Vary the number of terms in the series (the second argument that check

sends to myexp) and see the effect on the accuracy of the result. Adjust

this value until the estimated value agrees with the correct answer when

x is 1.

5. Write a loop in main that invokes check with the values 0.1, 1.0, 10.0, and

100.0. How does the accuracy of the result vary as x varies? Compare

the number of digits of agreement rather than the difference between the

actual and estimated values.

6. Add a loop in main that checks myexp with the values -0.1, -1.0, -10.0,

and -100.0. Comment on the accuracy.

Exercise 10.5 The goal of this exercise is to practice encapsulation and

generalization using some of the examples in previous chapters.

1. Starting with the code in Section 8.5, write a method called powArray

that takes a double array, a, and returns a new array that contains the

elements of a squared. Generalize it to take a second argument and raise

the elements of a to the given power.

2. Starting with the code in Section 9.10, write a method called histogram

that takes an int array of scores from 0 to (but not including) 100, and

returns a histogram of 100 counters. Generalize it to take the number of

counters as an argument.

10.11 Exercises 183

Exercise 10.6 The following code fragment traverses a string and checks

whether it has the same number of opening and closing parentheses:

String s = "((3 + 7) * 2)";

int count = 0;

for (int i = 0; i < s.length(); i++) {

char c = s.charAt(i);

if (c == '(') {

count++;

} else if (c == ')') {

count--;

}

}

System.out.println(count);

1. Encapsulate this fragment in a method that takes a string argument and

returns the final value of count.

2. Test your method with multiple strings, including some that are balanced

and some that are not.

3. Generalize the code so that it works on any string. What could you do

to generalize it more?

184 Chapter 10 Immutable Objects

Chapter 11

Mutable Objects

As you learned in the previous chapter, an object is a collection of data that

provides a set of methods. For example, a String is a collection of characters

that provides methods like charAt and substring.

This chapter explores two new types of objects: Point and Rectangle. You’ll

see how to write methods that take objects as parameters and produce objects

as return values. You will also look at the source code for the Java library.

11.1 Point Objects

In math, 2D points are often written in parentheses with a comma separating

the coordinates. For example, (0, 0) indicates the origin, and (x, y) indicates

the point x units to the right and y units up from the origin.

The java.awt package provides a class named Point that represents a location

in a Cartesian plane. In order to use the Point class, you have to import it:

import java.awt.Point;

Then, to create a new point, you use the new operator:

Point blank;

blank = new Point(3, 4);

186 Chapter 11 Mutable Objects

The first line declares that blank has type Point. The second line creates

the new Point with the coordinates x = 3 and y = 4. The result of the new

operator is a reference to the object. Figure 11.1 shows the result.

4y

3x

blank

Point

Figure 11.1: Memory diagram showing a variable that refers to a Point object.

As usual, the name of the variable blank appears outside the box, and its

value appears inside the box. In this case, the value is a reference, which

is represented with an arrow. The arrow points to the Point object, which

contains two variables, x and y.

Variables that belong to an object are called attributes. In some documentation,

you also see them called “fields”. To access an attribute of an object, Java

uses dot notation. For example:

int x = blank.x;

The expression blank.x means “go to the object blank refers to, and get the

value of the attribute x.” In this case, we assign that value to a local variable

named x.

There is no conflict between the local variable x and the attribute x. The

purpose of dot notation is to identify which variable you are referring to

unambiguously.

You can use dot notation as part of an expression. For example:

System.out.println(blank.x + ", " + blank.y);

int sum = blank.x * blank.x + blank.y * blank.y;

The first line displays 3, 4. The second line calculates the value 25.

11.2 Objects as Parameters 187

11.2 Objects as Parameters

You can pass objects as parameters in the usual way. For example:

public static void printPoint(Point p) {

System.out.println("(" + p.x + ", " + p.y + ")");

}

This method takes a point as an argument and displays its attributes in

parentheses. If you invoke printPoint(blank), it displays (3, 4).

As another example, we can rewrite the distance method from Section 4.9 so

that it takes two Points as parameters instead of four doubles:

public static double distance(Point p1, Point p2) {

int dx = p2.x - p1.x;

int dy = p2.y - p1.y;

return Math.sqrt(dx * dx + dy * dy);

}

Passing objects as parameters makes the source code more readable and less

error-prone because related values are bundled together.

You actually don’t need to write a distance method, because Point objects

already have one. To compute the distance between two points, we invoke

distance on one and pass the other as an argument:

Point p1 = new Point(0, 0);

Point p2 = new Point(3, 4);

double dist = p1.distance(p2); // dist is 5.0

It turns out you don’t need the printPoint method either. If you invoke

System.out.println(blank), it prints the type of the object and the values

of the attributes:

java.awt.Point[x=3,y=4]

Point objects provide a method called toString that returns a string representation

of a point. When you call println with objects, it automatically calls toString

and displays the result.

188 Chapter 11 Mutable Objects

11.3 Objects as Return Values

The java.awt package also provides a class named Rectangle. To use it, you

have to import it:

import java.awt.Rectangle;

Rectangle objects are similar to points, but they have four attributes: x, y,

width, and height. The following example creates a Rectangle object and

makes the variable box refer to it:

Rectangle box = new Rectangle(0, 0, 100, 200);

Figure 11.2 shows the effect of this assignment.

100width0x

0 200heighty

box

Rectangle

Figure 11.2: Memory diagram showing a Rectangle object.

If you run System.out.println(box), you get this:

java.awt.Rectangle[x=0,y=0,width=100,height=200]

Again, println uses the toString method provided by Rectangle, which

knows how to represent Rectangle objects as strings.

You can also write methods that return new objects. For example, findCenter

takes a Rectangle as an argument and returns a Point with the coordinates

of the center of the rectangle:

public static Point findCenter(Rectangle box) {

int x = box.x + box.width / 2;

int y = box.y + box.height / 2;

return new Point(x, y);

}

The return type of this method is Point. The last line creates a new Point

object and returns a reference to it.

11.4 Rectangles Are Mutable 189

11.4 Rectangles Are Mutable

You can change the contents of an object by making an assignment to one of

its attributes. For example, to “move” a rectangle without changing its size,

you can modify the x and y values:

Rectangle box = new Rectangle(0, 0, 100, 200);

box.x = box.x + 50;

box.y = box.y + 100;

The result is shown in Figure 11.3.

box

x

200heighty

100width

100

50

Rectangle

Figure 11.3: Memory diagram showing updated attributes.

We can encapsulate this code in a method and generalize it to move the

rectangle by any amount:

public static void moveRect(Rectangle box, int dx, int dy) {

box.x = box.x + dx;

box.y = box.y + dy;

}

The variables dx and dy indicate how far to move the rectangle in each

direction. Invoking this method has the effect of modifying the Rectangle

that is passed as an argument:

Rectangle box = new Rectangle(0, 0, 100, 200);

moveRect(box, 50, 100); // now at (50, 100, 100, 200)

Modifying objects by passing them as arguments to methods can be useful.

But it can also make debugging difficult, because it is not always clear which

method invocations modify their arguments.

Java provides a number of methods that operate on Points and Rectangles.

For example, translate has the same effect as moveRect, but instead of

passing the rectangle as an argument, you use dot notation:

190 Chapter 11 Mutable Objects

box.translate(50, 100);

This line invokes the translatemethod on the object that box refers to, which

modifies the object.

This syntax—using dot notation to invoke a method on an object, rather than

passing it as a parameter—is more consistent with the style of object-oriented

programming.

11.5 Aliasing Revisited

Remember that when you assign an object to a variable, you are assigning a

reference to an object. It is possible to have multiple variables that refer to

the same object. For example, this code creates two variables that refer to the

same Rectangle:

Rectangle box1 = new Rectangle(0, 0, 100, 200);

Rectangle box2 = box1;

Figure 11.4 shows the result: box1 and box2 refer to the same object, so any

changes that affect one variable also affect the other.

x

heighty

widthbox1

box2

0

0

100

200

Rectangle

Figure 11.4: Memory diagram showing two variables that refer to the same
Rectangle object.

For example, the following code uses grow to make box1 bigger by 50 units in

all directions. It decreases x and y by 50, and it increases height and width

by 100:

box1.grow(50, 50); // grow box1 (alias)

The result is shown in Figure 11.5.

11.6 Java Library Source 191

x

heighty

widthbox1

box2

−50

−50

200

300

Rectangle

Figure 11.5: Memory diagram showing the effect of invoking grow.

Now, if we print box1, we are not surprised to see that it has changed:

java.awt.Rectangle[x=-50,y=-50,width=200,height=300]

And if we print box2, we should not be surprised to see that it has changed

too, because it refers to the same object:

java.awt.Rectangle[x=-50,y=-50,width=200,height=300]

This scenario is called “aliasing” because a single object has multiple names,

or aliases, that refer to it.

As you can tell from this simple example, code that involves aliasing can get

confusing fast, and it can be difficult to debug.

11.6 Java Library Source

So far we have used several classes from the Java library, including System,

String, Scanner, Math, and Random. These classes are written in Java, so you

can read the source code to see how they work.

The Java library contains thousands of files, many of which are thousands of

lines of code. That’s more than one person could read and understand fully,

but don’t be intimidated!

Because it’s so large, the library source code is stored in a ZIP archive named

src.zip. If you have Java installed on your computer, you should already have

this file somewhere:

� On Linux, it’s likely under: /usr/lib/jvm/.../lib

If not, you might have to install the openjdk-...-source package.

192 Chapter 11 Mutable Objects

� On macOS, it’s likely under:

/Library/Java/JavaVirtualMachines/.../Contents/Home/lib

� On Windows, it’s likely under: C:\Program Files\Java\...\lib

When you open (or unzip) the file, you will see folders that correspond to Java

packages. For example, open the java folder, and then open the awt folder.

(If you don’t see a java folder at first, open the java.desktop folder.) You

should now see Point.java and Rectangle.java, along with the other classes in

the java.awt package.

Open Point.java in your editor and skim through the file. It uses language

features we haven’t discussed yet, so you probably won’t understand every

line. But you can get a sense of what professional Java source code looks like

by browsing through the library.

Notice how much of Point.java is documentation (see Appendix B). Each

method includes comments and tags like @param and @return. Javadoc reads

these comments and generates documentation in HTML. You can see the same

documentation online by doing a web search for “Java Point”.

Now take a look at the grow and translate methods in the Rectangle class.

There is more to them than you may have expected.

11.7 Class Diagrams

To summarize what you’ve learned so far, Point and Rectangle objects have

attributes and methods. Attributes are an object’s data; methods are an

object’s code. An object’s class definition specifies the attributes and methods

that it has.

Unified Modeling Language (UML) defines a graphical way to summarize

this information. Figure 11.6 shows two examples, the UML class diagrams

for the Point and Rectangle classes.

Each class is represented by a box with the name of the class, a list of

attributes, and a list of methods.

11.8 Scope Revisited 193

Figure 11.6: UML class diagrams for Point and Rectangle.

To identify the types of attributes and parameters, UML uses a language-

independent syntax, like x: int rather than Java syntax, int x.

The plus sign (+) identifies public attributes and methods. A minus sign

(-) identifies private attributes and methods, which we discuss in the next

chapter.

Both Point and Rectangle have additional methods; we show only the ones

introduced in this chapter.

In contrast to memory diagrams, which visualize objects (and variables) at

run-time, a class diagram visualizes the source code at compile-time.

11.8 Scope Revisited

In Section 4.5, we introduced the idea that variables have scope. The scope of

a variable is the part of a program where a variable can be used.

Consider the first few lines of the Rectangle.translate method from the

Java library source code:

public void translate(int dx, int dy) {

int oldv = this.x;

int newv = oldv + dx;

if (dx < 0) {

...

This example uses three kinds of variables:

194 Chapter 11 Mutable Objects

� Parameters (dx and dy)

� Local variables (oldv and newv)

� Attributes (this.x)

Parameters and local variables are created when a method is invoked, and

they disappear when the method returns. They can be used anywhere inside

the method, but not in other methods and not in other classes.

Attributes are created when an object is created, and they disappear when the

object is destroyed. They can be used in any of the object’s methods, using

the keyword this. And if they are public, they can be used in other classes

via references to the object, box1.x.

When the Java compiler encounters a variable name, it searches backward for

its declaration. The compiler first looks for local variables, then parameters,

then attributes.

11.9 Garbage Collection

In the previous section, we said that attributes exist as long as the object

exists. But when does an object cease to exist? Here is a simple example:

Point blank = new Point(3, 4);

blank = null;

The first line creates a new Point object and makes blank refer to it. The

second line changes blank so that instead of referring to the object, it refers

to nothing. As shown in Figure 11.7, after the second assignment, there are

no references to the Point object.

If there are no references to an object, there is no way to access its attributes

or invoke a method on it. From the program’s point of view, it ceases to exist.

However, it’s still present in the computer’s memory, taking up space.

As your program runs, the system automatically looks for stranded objects

and deletes them; then the space can be reused for new objects. This process

is called garbage collection.

11.10 Mutable vs Immutable 195

4y

3x

blank

Point

Figure 11.7: Memory diagram showing the effect of setting a variable to null.

You don’t have to do anything to make garbage collection happen, and in

general, you don’t have to be aware of it. But in high-performance applications,

you may notice a slight delay every now and then while Java reclaims space

from discarded objects.

11.10 Mutable vs Immutable

Points and Rectangles are mutable objects, because their attributes can be

modified. You can modify their attributes directly, like box.x = 15, or you

can invoke methods that modify their attributes, like box.translate(15, 0).

In contrast, immutable objects like Strings and Integers cannot be modified.

They don’t allow direct access to their attributes or provide methods that

change them.

Immutable objects have advantages that help improve the reliability and performance

of programs. You can pass strings (and other immutable objects) to methods

without worrying about their contents changing as a side-effect of the method.

That makes programs easier to debug and more reliable.

Also, two strings that contain the same characters can be stored in memory

only once. That can reduce the amount of memory the program uses and can

speed it up.

In the following example, s1 and s2 are created differently, but they refer to

equivalent strings; that is, the two strings contain the same characters:

196 Chapter 11 Mutable Objects

public class Surprise {

public static void main(String[] args) {

String s1 = "Hi, Mom!";

String s2 = "Hi, " + "Mom!";

if (s1 == s2) { // true!

System.out.println("s1 and s2 are the same");

}

}

}

Because both strings are specified at compile time, the compiler can tell that

they are equivalent. And because strings are immutable, there is no need to

make two copies; the compiler can create one String and make both variables

refer to it.

As a result, the test s1 == s2 turns out to be true, which means that s1 and

s2 refer to the same object. In other words, they are not just equivalent; they

are identical.

Although immutable objects have some advantages, mutable objects have

other advantages. Sometimes it is more efficient to modify an existing object,

rather than create a new one. And some computations can be expressed more

naturally using mutation.

Neither design is always better, which is why you will see both.

11.11 StringBuilder Objects

Here’s an example in which mutable objects are efficient and arguably more

natural: building a long string by concatenating lots of small pieces.

Strings are particularly inefficient for this operation. For example, consider

the following program, which reads 10 lines from System.in and concatenates

them into a single String:

11.11 StringBuilder Objects 197

String text = "";

for (int i = 0; i < 10; i++) {

String line = in.nextLine(); // new string

text = text + line + '\n'; // two more strings

}

System.out.print("You entered:\n" + text);

Inside the for loop, in.nextLine() returns a new string each time it is

invoked. The next line of code concatenates text and line, which creates

another string, and then appends the newline character, which creates yet

another string.

As a result, this loop creates 30 String objects! At the end, text refers to

the most recent String. Garbage collection deletes the rest, but that’s a lot

of garbage for a seemingly simple program.

The Java library provides the StringBuilder class for just this reason. It’s

part of the java.lang package, so you don’t need to import it. Because

StringBuilder objects are mutable, they can implement concatenation more

efficiently.

Here’s a version of the program that uses StringBuilder:

StringBuilder text = new StringBuilder();

for (int i = 0; i < 10; i++) {

String line = in.nextLine();

text.append(line);

text.append('\n');

}

System.out.print("You entered:\n" + text);

The append method takes a String as a parameter and appends it to the end

of the StringBuilder. Each time it is invoked, it modifies the StringBuilder;

it doesn’t create any new objects.

If needed, you can return the StringBuilder’s contents as a string by calling

the toString method:

String result = text.toString();

198 Chapter 11 Mutable Objects

The StringBuilder class also provides methods for inserting and deleting

parts of strings efficiently. Programs that manipulate large amounts of text

run much faster if you use StringBuilder instead of String.

11.12 Vocabulary

attribute: One of the named data items that make up an object.

dot notation: Use of the dot operator (.) to access an object’s attributes or

methods.

UML: Unified Modeling Language, a standard way to draw diagrams for

software engineering.

class diagram: An illustration of the attributes and methods for a class.

garbage collection: The process of finding objects that have no references

and reclaiming their storage space.

mutable: An object that can be modified at any time. Points and rectangles

are mutable by design.

11.13 Exercises

The code for this chapter is in the ch10 directory of ThinkJavaCode2. See

page xviii for instructions on how to download the repository. Before you

start the exercises, we recommend that you compile and run the examples.

At this point, you know enough to read Appendix C, which is about simple

2D graphics and animations. During the next few chapters, you should take a

detour to read this appendix and work through the exercises.

Exercise 11.1 The point of this exercise is to make sure you understand the

mechanism for passing objects as parameters.

1. For the following program, draw a stack diagram showing the local

variables and parameters of main and riddle just before riddle returns.

Use arrows to show which objects each variable references.

11.13 Exercises 199

2. What is the output of the program?

3. Is the blank object mutable or immutable? How can you tell?

public static int riddle(int x, Point p) {

x = x + 7;

return x + p.x + p.y;

}

public static void main(String[] args) {

int x = 5;

Point blank = new Point(1, 2);

System.out.println(riddle(x, blank));

System.out.println(x);

System.out.println(blank.x);

System.out.println(blank.y);

}

Exercise 11.2 The point of this exercise is to make sure you understand the

mechanism for returning new objects from methods. The following code uses

findCenter and distance as defined in this chapter.

1. Draw a stack diagram showing the state of the program just before

findCenter returns. Include all variables and parameters, and show

the objects those variables refer to.

2. Draw a stack diagram showing the state of the program just before

distance returns. Show all variables, parameters, and objects.

3. What is the output of this program? (Can you tell without running it?)

public static void main(String[] args) {

Point blank = new Point(5, 8);

Rectangle rect = new Rectangle(0, 2, 4, 4);

Point center = findCenter(rect);

double dist = distance(center, blank);

System.out.println(dist);

}

200 Chapter 11 Mutable Objects

Exercise 11.3 This exercise is about aliasing. Recall that aliases are two

variables that refer to the same object. The following code uses findCenter

and printPoint as defined in this chapter.

1. Draw a diagram that shows the state of the program just before the end

of main. Include all local variables and the objects they refer to.

2. What is the output of the program?

3. At the end of main, are p1 and p2 aliased? Why or why not?

public static void main(String[] args) {

Rectangle box1 = new Rectangle(2, 4, 7, 9);

Point p1 = findCenter(box1);

printPoint(p1);

box1.grow(1, 1);

Point p2 = findCenter(box1);

printPoint(p2);

}

Chapter 12

Designing Classes

Whenever you create a new class, you are creating a new object type with the

same name. So way back in Section 1.4, when we created the class Hello, we

also created an object type named Hello.

We didn’t declare any variables with type Hello, and we didn’t use new to

create Hello objects. And it wouldn’t have done much good if we had—but

we could have!

In this chapter, you will learn to design classes that represent useful objects.

Here are the main ideas:

� Again, defining a class creates a new object type with the same name.

� A class definition is a template for objects: it specifies what attributes

the objects have and what methods can operate on them.

� Every object belongs to an object type; that is, it is an instance of a

class.

� The new operator instantiates objects; that is, it creates new instances

of a class.

Think of a class as a blueprint for a house: you can use the same blueprint to

build any number of houses.

202 Chapter 12 Designing Classes

12.1 The Time Class

A common reason to define a new class is to encapsulate related data in an

object that can be treated as a single unit. That way, we can use objects

as parameters and return values, rather than passing and returning multiple

values. You have already seen two types that encapsulate data in this way:

Point and Rectangle.

Another example, which we will implement ourselves, is Time, which represents

a time of day. The data encapsulated in a Time object includes an hour, a

minute, and a number of seconds. Because every Time object contains these

values, we define attributes to hold them.

Attributes are also called instance variables, because each instance has its

own variables (as opposed to “class variables”, coming up in Section 13.3).

The first step is to decide what type each variable should be. It seems clear

that hour and minute should be integers. Just to keep things interesting, let’s

make second a double.

Instance variables are declared at the beginning of the class definition, outside

any method. By itself, this code fragment is a legal class definition:

public class Time {

private int hour;

private int minute;

private double second;

}

The Time class is public, which means that it can be used in other classes.

But the instance variables are private, which means they can be accessed

only from inside the Time class. If you try to read or write them from another

class, you will get a compiler error.

Private instance variables help keep classes isolated from each other, so that

changes in one class won’t require changes in other classes. It also simplifies

what other programmers need to know to use your classes. This kind of

isolation is called information hiding.

12.2 Constructors 203

12.2 Constructors

After declaring instance variables, the next step is to define a constructor,

which is a special method that initializes the object. The syntax for constructors

is similar to that of other methods, except for the following:

� The name of the constructor is the same as the name of the class.

� Constructors have no return type (and no return value).

� The keyword static is omitted.

Here is an example constructor for the Time class:

public Time() {

this.hour = 0;

this.minute = 0;

this.second = 0.0;

}

This constructor does not take any arguments. Each line initializes an instance

variable to 0 (which is midnight for a Time object).

The name this is a keyword that refers to the object we are creating. You can

use this the same way you use the name of any other object. For example,

you can read and write the instance variables of this, and you can pass this

as an argument to other methods. But you do not declare this, and you can’t

make an assignment to it.

A common error when writing constructors is to put a return statement at

the end. Like void methods, constructors do not return values.

To create a Time object, you must use the new operator:

public static void main(String[] args) {

Time time = new Time();

}

When you use new, Java creates the object and invokes your constructor to

initialize the instance variables. When the constructor is done, new returns a

204 Chapter 12 Designing Classes

hour 0

minute 0

0.0second

time

Time

Figure 12.1: Memory diagram of a Time object.

reference to the new object. In this example, the reference gets assigned to

the variable time, which has type Time. Figure 12.1 shows the result.

Beginners sometimes make the mistake of using new in the constructor:

public Time() {

new Time(); // StackOverflowError

this.hour = 0;

this.minute = 0;

this.second = 0.0;

}

Doing so causes an infinite recursion, since new invokes the same constructor,

which uses new again, which invokes the constructor again, and so on.

12.3 Value Constructors

Like other methods, constructors can be overloaded, which means you can

provide multiple constructors with different parameters. Java knows which

constructor to invoke by matching the arguments you provide with the parameters

of the constructor.

It is common to provide both a “default constructor” that takes no arguments,

like the previous one, and a “value constructor”, like this one:

12.3 Value Constructors 205

public Time(int hour, int minute, double second) {

this.hour = hour;

this.minute = minute;

this.second = second;

}

To invoke this constructor, you have to provide arguments to the new operator.

The following example creates a Time object that represents a fraction of a

second before noon:

Time time = new Time(11, 59, 59.9);

Overloading constructors provides the flexibility to create an object first and

then fill in the attributes, or collect all the information before creating the

object itself.

Once you get the hang of it, writing constructors gets boring. You can write

them quickly just by looking at the list of instance variables. In fact, some

IDEs can generate them for you.

Here is the complete class definition so far:

public class Time {

private int hour;

private int minute;

private double second;

public Time() {

this.hour = 0;

this.minute = 0;

this.second = 0.0;

}

public Time(int hour, int minute, double second) {

this.hour = hour;

this.minute = minute;

this.second = second;

}

}

206 Chapter 12 Designing Classes

Notice how the second constructor declares the parameters hour, minute, and

second. Java allows you to declare parameters (and local variables) with the

same names as instance variables. They don’t have to use the same names,

but it’s common practice.

The right side of this.hour = hour; refers to the parameter hour, since it

was declared most recently. This situation is called shadowing, because the

parameter “hides” the instance variable with the same name.

Java provides the keyword this so you can access instance variables, regardless

of shadowing. As a result, this constructor copies the values from the parameters

to the instance variables.

12.4 Getters and Setters

Recall that the instance variables of Time are private. We can access them

from within the Time class, but if we try to read or write them from another

class, the compiler reports an error.

A class that uses objects defined in another class is called a client. For

example, here is a new class called TimeClient:

public class TimeClient {

public static void main(String[] args) {

Time time = new Time(11, 59, 59.9);

System.out.println(time.hour); // compiler error

}

}

If you compile this code, you get an error message like “hour has private access

in Time”. There are three ways to solve this problem:

� Make the instance variables public.

� Provide methods to access the instance variables.

� Decide that it’s not a problem and refuse to let other classes access the

instance variables.

12.4 Getters and Setters 207

The first choice is appealing because it’s simple. But here is the problem:

when class A accesses the instance variables of class B directly, A becomes

dependent on B. If anything in B changes later, it is likely that A will have

to change too.

But if A uses only methods to interact with B, A and B are less dependent,

which means that we can make changes in B without affecting A (as long as we

don’t change the method parameters). So we generally avoid making instance

variables public.

The second option is to provide methods that access the instance variables.

For example, we might want the instance variables to be “read only”; that is,

code in other classes should be able to read them but not write them. We can

do that by providing one method for each instance variable:

public int getHour() {

return this.hour;

}

public int getMinute() {

return this.minute;

}

public double getSecond() {

return this.second;

}

Methods like these are formally called “accessors”, but more commonly referred

to as getters. By convention, the method that gets a variable named something

is called getSomething.

We can fix the compiler error in TimeClient by using the getter:

System.out.println(time.getHour());

If we decide that TimeClient should also be able to modify the instance

variables of Time, we can provide methods to do that too:

208 Chapter 12 Designing Classes

public void setHour(int hour) {

this.hour = hour;

}

public void setMinute(int minute) {

this.minute = minute;

}

public void setSecond(double second) {

this.second = second;

}

These methods are formally called “mutators”, but more commonly known as

setters. The naming convention is similar; the method that sets something

is usually called setSomething.

Writing getters and setters can get boring, but many IDEs can generate them

for you based on the instance variables.

12.5 Displaying Objects

To display Time objects, we can write a method to display the hour, minute,

and second. Using printTime in Section 4.4 as a starting point, we could write

the following:

public static void printTime(Time t) {

System.out.print(t.hour);

System.out.print(":");

System.out.print(t.minute);

System.out.print(":");

System.out.println(t.second);

}

The output of this method, given the time object from the first example,

would be 11:59:59.9. We can use printf to make the code more concise:

public static void printTime(Time t) {

System.out.printf("%02d:%02d:%04.1f\n",

t.hour, t.minute, t.second);

}

12.6 The toString Method 209

As a reminder, you need to use %d with integers, and %f with floating-point

numbers. The 02 option means “total width 2, with leading zeros if necessary”,

and the 04.1 option means “total width 4, one digit after the decimal point,

leading zeros if necessary”. The output is the same: 11:59:59.9.

There’s nothing wrong with a method like printTime, but it is not consistent

with object-oriented style. A more idiomatic solution is to provide a special

method called toString.

12.6 The toString Method

Every object has a method called toString that returns a string representation

of the object. When you display an object using print or println, Java

invokes the object’s toString method.

By default, it simply displays the type of the object and its address in hexadecimal.

So, say you create a Time object and display it with println:

public static void main(String[] args) {

Time time = new Time(11, 59, 59.9);

System.out.println(time);

}

The output looks something like this:

Time@80cc7c0

This address can be useful for debugging, if you want to keep track of individual

objects.

But you can override this behavior by providing your own toString method.

For example, here is a toString method for Time:

public String toString() {

return String.format("%02d:%02d:%04.1f\n",

this.hour, this.minute, this.second);

}

The definition does not have the keyword static, because it is not a static

method. It is an instance method, so called because when you invoke it, you

210 Chapter 12 Designing Classes

invoke it on an instance of the class. Instance methods are sometimes called

“non-static”; you might see this term in an error message.

The body of the method is similar to printTime in the previous section, with

two changes:

� Inside the method, we use this to refer to the current instance; that is,

the object the method is invoked on.

� Instead of printf, it uses String.format, which returns a formatted

String rather than displaying it.

Now you can call toString directly:

Time time = new Time(11, 59, 59.9);

String s = time.toString();

The value of s is the string "11:59:59.9". You can also invoke toString

indirectly by invoking print or println:

System.out.println(time);

This code displays the string "11:59:59.9". Either way, when you use this

inside toString, it refers to the same object as time.

12.7 The equals Method

We have seen two ways to check whether values are equal: the == operator

and the equals method. With objects, you can use either one, but they are

not the same:

� The == operator checks whether two references are identical; that is,

whether they refer to the same object.

� The equals method checks whether two objects are equivalent; that

is, whether they have the same values.

12.7 The equals Method 211

The definition of identity is always the same, so the == operator always does the

same thing. But the definition of equivalence is different for different objects,

so objects can define their own equals methods.

Consider the following variables and the corresponding memory diagram in

Figure 12.2:

Time time1 = new Time(9, 30, 0.0);

Time time2 = time1;

Time time3 = new Time(9, 30, 0.0);

time3time1

time2

Time

hour 9

minute 30

0.0second

Time

hour 9

minute 30

0.0second

Figure 12.2: Memory diagram of three Time variables.

The assignment operator copies references, so time1 and time2 refer to the

same object. Because they are identical, time1 == time2 is true. But time1

and time3 refer to two different objects. Because they are not identical,

time1 == time3 is false.

By default, the equals method does the same thing as ==. For Time objects,

that’s probably not what we want. For example, time1 and time3 represent

the same time of day, so we should consider them equivalent.

We can provide an equals method that implements this idea:

public boolean equals(Time that) {

final double DELTA = 0.001;

return this.hour == that.hour

&& this.minute == that.minute

&& Math.abs(this.second - that.second) < DELTA;

}

equals is an instance method, so it doesn’t have the keyword static. It uses

this to refer to the current object, and that to refer to the other. that is not

212 Chapter 12 Designing Classes

a keyword, so we could have given this parameter a different name. But using

that makes the code nicely readable.

We can invoke equals like this:

time1.equals(time3);

Inside the equals method, this refers to the same object as time1, and that

refers to the same object as time3. Since their instance variables are “equal”,

the result is true.

Because hour and minute are integers, we compare them with ==. But second

is a floating-point number. Because of rounding errors, it is not good to

compare floating-point numbers with == (see Section 2.7). Instead, we check

whether the difference is smaller than a threshold, DELTA.

Many objects have a similar notion of equivalence; that is, two objects are

considered equal if their instance variables are equal. But other definitions are

possible.

12.8 Adding Times

Suppose you are going to a movie that starts at 18:50 (that is, 6:50 PM), and

the running time is 2 hours, 16 minutes. What time does the movie end? We’ll

use Time objects to figure it out:

Time startTime = new Time(18, 50, 0.0);

Time runningTime = new Time(2, 16, 0.0);

Here are two ways we could “add” the Time objects:

� Write a static method that takes two Time objects as parameters.

� Write an instance method that gets invoked on one object and takes the

other as a parameter.

To demonstrate the difference, we’ll do both. Here is the static method:

12.8 Adding Times 213

public static Time add(Time t1, Time t2) {

Time sum = new Time();

sum.hour = t1.hour + t2.hour;

sum.minute = t1.minute + t2.minute;

sum.second = t1.second + t2.second;

return sum;

}

And here’s how we would invoke it:

Time endTime = Time.add(startTime, runningTime);

Here’s what it looks like as an instance method:

public Time add(Time t2) {

Time sum = new Time();

sum.hour = this.hour + t2.hour;

sum.minute = this.minute + t2.minute;

sum.second = this.second + t2.second;

return sum;

}

And here’s how we would invoke it:

Time endTime = startTime.add(runningTime);

Notice the differences:

� The static method has the keyword static; the instance method does

not.

� The static method has two parameters, t1 and t2. The instance method

has one explicit parameter, t2, and the implicit parameter, this.

� We invoked the static method with the Time class; we invoked the

instance method with the startTime object.

That’s all there is to it. Static methods and instance methods do the same

thing, and you can convert from one to the other with just a few changes.

However, there’s a problem with both of these methods; they are not correct.

The result from either method is 20:66, which is not a valid time.

214 Chapter 12 Designing Classes

If second exceeds 59, we have to carry into the minutes column, and if minute

exceeds 59, we have to carry into hour.

Here is a better version of the instance method, add:

public Time add(Time t2) {

Time sum = new Time();

sum.hour = this.hour + t2.hour;

sum.minute = this.minute + t2.minute;

sum.second = this.second + t2.second;

if (sum.second >= 60.0) {

sum.second -= 60.0;

sum.minute += 1;

}

if (sum.minute >= 60) {

sum.minute -= 60;

sum.hour += 1;

}

if (sum.hour >= 24) {

sum.hour -= 24;

}

return sum;

}

If hour exceeds 23, we subtract 24 hours, but there’s no days attribute to

carry into.

12.9 Vocabulary

class: In Chapter 1, we defined a class as a collection of related methods.

Now you know that a class is also a template for a new type of object.

instance: A member of a class. Every object is an instance of a class.

instantiate: Create a new instance of a class in the computer’s memory.

instance variable: An attribute of an object; a non-static variable defined

at the class level.

12.10 Exercises 215

information hiding: The practice of making instance variables private to

limit dependencies between classes.

constructor: A special method that initializes the instance variables of a

newly constructed object.

shadowing: Occurs when a local variable or parameter has the same name

as an attribute.

client: A class that uses objects defined in another class.

getter: A method that returns the value of an instance variable.

setter: A method that assigns a value to an instance variable.

override: To replace a default implementation of a method, such as toString.

instance method: A non-static method that has access to this and the

instance variables.

identical: References to the same object (at the same location in memory).

equivalent: Objects that are equal in value, as defined by the equalsmethod.

12.10 Exercises

The code for this chapter is in the ch11 directory of ThinkJavaCode2. See

page xviii for instructions on how to download the repository. Before you

start the exercises, we recommend that you compile and run the examples.

Exercise 12.1 The implementation of increment in this chapter is not very

efficient. Can you rewrite it so it doesn’t use any loops?

Hint: Remember the remainder operator—it works with floating-point too.

Exercise 12.2 In the board game Scrabble, each tile contains a letter, which

is used to spell words in rows and columns, and a score, which is used to

determine the value of words. The point of this exercise is to practice the

mechanical part of creating a new class definition:

216 Chapter 12 Designing Classes

1. Write a definition for a class named Tile that represents Scrabble tiles.

The instance variables should include a character named letter and an

integer named value.

2. Write a constructor that takes parameters named letter and value,

and initializes the instance variables.

3. Write a method named printTile that takes a Tile object as a parameter

and displays the instance variables in a reader-friendly format.

4. Write a main method that creates a Tile object with the letter Z and

the value 10, and then uses printTile to display the state of the object.

5. Implement the toString and equals methods for a Tile.

6. Create getters and setters for each of the attributes.

Exercise 12.3 Write a class definition for Date, an object type that contains

three integers: year, month, and day. This class should provide two constructors.

The first should take no parameters and initialize a default date. The second

should take parameters named year, month and day, and use them to initialize

the instance variables.

Write a main method that creates a new Date object named birthday. The

new object should contain your birth date. You can use either constructor.

Exercise 12.4 A “rational number” is a number that can be represented as

the ratio of two integers. For example, 2/3 is a rational number, and you can

think of 7 as a rational number with an implicit 1 in the denominator.

The purpose of this exercise is to write a class definition that includes a

variety of methods, including constructors, static methods, instance methods,

modifiers, and pure methods:

1. Define a class called Rational. A Rational object should have two

integer instance variables that store the numerator and denominator.

2. Write a constructor that takes no arguments and sets the numerator to

0 and denominator to 1.

3. Write an instance method called printRational that displays a Rational

object in a reasonable format.

12.10 Exercises 217

4. Write a main method that creates a new object with type Rational,

sets its instance variables to the values of your choice, and displays the

object.

5. You now have a minimal testable program. Test it and, if necessary,

debug it.

6. Write a toString method for Rational and test it using println.

7. Write a second constructor that takes two arguments and uses them to

initialize the instance variables.

8. Write an instance method called negate that reverses the sign of a

rational number. This method should be a modifier, so it should be

void. Add lines to main to test the new method.

9. Write an instance method called invert that swaps the numerator and

denominator. It should be a modifier. Add lines to main to test the new

method.

10. Write an instance method called toDouble that converts the rational

number to a double (floating-point number) and returns the result. This

method is a pure method; it does not modify the object. As always, test

the new method.

11. Write an instance method named reduce that reduces a rational number

to its lowest terms by finding the greatest common divisor (GCD) of the

numerator and denominator and dividing through. This method should

be a pure method; it should not modify the instance variables of the

object on which it is invoked.

Hint: Finding the GCD takes only a few lines of code. Search the web

for “Euclidean algorithm”.

12. Write an instance method called add that takes a Rational number as

an argument, adds it to this, and returns a new Rational object. There

are several ways to add fractions. You can use any one you want, but

you should make sure that the result of the operation is reduced so that

the numerator and denominator have no common divisor (other than 1).

218 Chapter 12 Designing Classes

Chapter 13

Arrays of Objects

During the next three chapters, we will develop programs that work with

playing cards and decks of cards. Here is an outline of the road ahead:

� In this chapter, we define a Card class and write methods that work with

cards and arrays of cards.

� In Chapter 14.1, we define a Deck class that encapsulates an array of

cards, and we write methods that operate on decks.

� In Chapter 15, we introduce a way to define new classes that extend

existing classes. Then we use Card and Deck to implement the game

Crazy Eights.

There are 52 cards in a standard deck. Each card belongs to one of four suits

and one of 13 ranks. The suits are Clubs, Diamonds, Hearts, and Spades. The

ranks are Ace, 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, and King.

If you are unfamiliar with traditional playing cards, now would be a good time

to get a deck or read through https://en.wikipedia.org/wiki/Standard_

52-card_deck.

https://en.wikipedia.org/wiki/Standard_52-card_deck
https://en.wikipedia.org/wiki/Standard_52-card_deck

220 Chapter 13 Arrays of Objects

13.1 Card Objects

If we want to define a class to represent a playing card, it is pretty clear what

the instance variables should be: rank and suit. It is not as obvious what

types they should be.

One possibility is a String containing things like "Spade" for suits and "Queen"

for ranks. A problem with this choice is that it would not be easy to compare

cards to see which had a higher rank or suit.

An alternative is to use integers to encode the ranks and suits. By encode,

we don’t mean to encrypt or translate into a secret code. We mean to define a

mapping between a sequence of numbers and the things we want to represent.

Here is a mapping for suits:

Clubs 7→ 0

Diamonds 7→ 1

Hearts 7→ 2

Spades 7→ 3

We use the mathematical symbol 7→ to make it clear that these mappings are

not part of the program. They are part of the program design, but they never

appear explicitly in the code.

Each of the numerical ranks (2 through 10) maps to the corresponding integer.

For the face cards, we can use the following:

Ace 7→ 1

Jack 7→ 11

Queen 7→ 12

King 7→ 13

With this encoding, the class definition for the Card type looks like this:

13.2 Card toString 221

public class Card {

private int rank;

private int suit;

public Card(int rank, int suit) {

this.rank = rank;

this.suit = suit;

}

}

The instance variables are private: we can access them from inside this class,

but not from other classes.

The constructor takes a parameter for each instance variable. To create a Card

object, we use the new operator:

Card threeOfClubs = new Card(3, 0);

The result is a reference to a Card that represents the 3 of Clubs.

13.2 Card toString

When you create a new class, the first step is to declare the instance variables

and write constructors. A good next step is to write toString, which is useful

for debugging and incremental development.

To display Card objects in a way that humans can read easily, we need to

“decode” the integer values as words. A natural way to do that is with an

array of Strings. For example, we can create the array like this:

String[] suits = new String[4];

And then assign values to the elements:

suits[0] = "Clubs";

suits[1] = "Diamonds";

suits[2] = "Hearts";

suits[3] = "Spades";

222 Chapter 13 Arrays of Objects

Or we can create the array and initialize the elements at the same time, as

you saw in Section 8.3:

String[] suits = {"Clubs", "Diamonds", "Hearts", "Spades"};

The memory diagram in Figure 13.1 shows the result. Each element of the

array is a reference to a String.

"Spades"

"Clubs"

"Diamonds"

"Hearts"

suits

Figure 13.1: Memory diagram of an array of strings.

We also need an array to decode the ranks:

String[] ranks = {null, "Ace", "2", "3", "4", "5", "6",

"7", "8", "9", "10", "Jack", "Queen", "King"};

The zeroth element should never be used, because the only valid ranks are

1–13. We set it to null to indicate an unused element.

Using these arrays, we can create a meaningful String by using suit and

rank as indexes.

String s = ranks[this.rank] + " of " + suits[this.suit];

The expression ranks[this.rank] means “use the instance variable rank

from this object as an index into the array ranks.” We select the string

for this.suit in a similar way.

Now we can wrap all the previous code in a toString method:

public String toString() {

String[] ranks = {null, "Ace", "2", "3", "4", "5", "6",

"7", "8", "9", "10", "Jack", "Queen", "King"};

String[] suits = {"Clubs", "Diamonds", "Hearts", "Spades"};

String s = ranks[this.rank] + " of " + suits[this.suit];

return s;

}

13.3 Class Variables 223

When we display a card, println automatically calls toString. The output

of the following code is Jack of Diamonds:

Card card = new Card(11, 1);

System.out.println(card);

13.3 Class Variables

So far you have seen local variables, which are declared inside a method, and

instance variables, which are declared in a class definition, usually before the

method definitions. Now it’s time to learn about class variables. They are

shared across all instances of the class.

Like instance variables, class variables are defined in a class definition, before

the method definitions. But they are identified by the keyword static. Here

is a version of Card in which RANKS and SUITS are defined as class variables:

public class Card {

public static final String[] RANKS = {

null, "Ace", "2", "3", "4", "5", "6", "7",

"8", "9", "10", "Jack", "Queen", "King"};

public static final String[] SUITS = {

"Clubs", "Diamonds", "Hearts", "Spades"};

// instance variables and constructors go here

public String toString() {

return RANKS[this.rank] + " of " + SUITS[this.suit];

}

}

Class variables are allocated when the program begins and persist until the

program ends. In contrast, instance variables like rank and suit are allocated

when the program creates new objects, and they are deleted when the object

is garbage-collected (see Section 11.9).

224 Chapter 13 Arrays of Objects

Class variables are often used to store constant values that are needed in

several places. In that case, they should also be declared as final. Note that

whether a variable is static or final involves two separate considerations:

static means the variable is shared, and final means the variable (or in this

case, the reference) is constant.

Naming static final variables with capital letters is a common convention

that makes it easier to recognize their role in the class. In the toString

method, we refer to SUITS and RANKS as if they were local variables, but we

can tell that they are class variables.

One advantage of defining SUITS and RANKS as class variables is that they don’t

need to be created (and garbage-collected) every time toString is called. They

may also be needed in other methods and classes, so it’s helpful to make them

available everywhere.

13.4 The compareTo Method

As you saw in Section 12.7, it’s helpful to create an equals method to test

whether two objects are equivalent:

public boolean equals(Card that) {

return this.rank == that.rank

&& this.suit == that.suit;

}

It would also be nice to have a method for comparing cards, so we can tell if one

is higher or lower than another. For primitive types, we can use comparison

operators like < and > to compare values. But these operators don’t work for

object types.

For strings, Java provides a compareTo method, as you saw in Section 7.6. We

can write our own version of compareTo for the classes that we define, as we

did for the equals method.

Some types are “totally ordered”, which means that you can compare any

two values and tell which is bigger. Integers and strings are totally ordered.

Other types are “unordered”, which means that there is no meaningful way

13.5 Cards Are Immutable 225

to say that one element is bigger than another. In Java, the boolean type is

unordered; if you try to compare true < false, you get a compiler error.

The set of playing cards is “partially ordered”, which means that sometimes

we can compare cards and sometimes not. For example, we know that the 3

of Clubs is higher than the 2 of Clubs, and the 3 of Diamonds is higher than

the 3 of Clubs. But which is better, the 3 of Clubs or the 2 of Diamonds? One

has a higher rank, but the other has a higher suit.

To make cards comparable, we have to decide which is more important: rank

or suit. The choice is arbitrary, and it might be different for different games.

But when you buy a new deck of cards, it comes sorted with all the Clubs

together, followed by all the Diamonds, and so on. So for now, let’s say that

suit is more important. With that decided, we can write compareTo as follows:

public int compareTo(Card that) {

if (this.suit < that.suit) {

return -1;

}

if (this.suit > that.suit) {

return 1;

}

if (this.rank < that.rank) {

return -1;

}

if (this.rank > that.rank) {

return 1;

}

return 0;

}

compareTo returns -1 if this is a lower card, +1 if this is a higher card, and

0 if this and that are equivalent. It compares suits first. If the suits are the

same, it compares ranks. If the ranks are also the same, it returns 0.

13.5 Cards Are Immutable

The instance variables of Card are private, so they can’t be accessed from

other classes. We can provide getters to allow other classes to read the rank

226 Chapter 13 Arrays of Objects

and suit values:

public int getRank() {

return this.rank;

}

public int getSuit() {

return this.suit;

}

Whether or not to provide setters is a design decision. If we did, cards would

be mutable, so you could transform one card into another. That is probably

not a feature we want, and in general, mutable objects are more error-prone.

So it might be better to make cards immutable. To do that, all we have to do

is not provide any modifier methods (including setters).

That’s easy enough, but it is not foolproof, because a fool might come along

later and add a modifier. We can prevent that possibility by declaring the

instance variables final:

public class Card {

private final int rank;

private final int suit;

...

}

You can initialize these variables inside a constructor, but if someone writes a

method that tries to modify them, they’ll get a compiler error. This kind of

safeguard helps prevent future mistakes and hours of debugging.

13.6 Arrays of Cards

Just as you can create an array of String objects, you can create an array of

Card objects. The following statement creates an array of 52 cards. Figure 13.2

shows the memory diagram for this array.

Card[] cards = new Card[52];

13.6 Arrays of Cards 227

1 2 3 510

cards

Figure 13.2: Memory diagram of an unpopulated Card array.

Although we call it an “array of cards”, the array contains references to cards;

it does not contain the Card objects themselves. Initially the references are

all null.

Even so, you can access the elements of the array in the usual way:

if (cards[0] == null) {

System.out.println("No card yet!");

}

But if you try to access the instance variables of non-existent Card objects,

you will get a NullPointerException:

System.out.println(cards[0].rank); // NullPointerException

That code won’t work until we put cards in the array. One way to populate

the array is to write nested for loops:

int index = 0;

for (int suit = 0; suit <= 3; suit++) {

for (int rank = 1; rank <= 13; rank++) {

cards[index] = new Card(rank, suit);

index++;

}

}

The outer loop iterates suits from 0 to 3. For each suit, the inner loop iterates

ranks from 1 to 13. Since the outer loop runs 4 times, and the inner loop runs

13 times for each suit, the body is executed 52 times.

We use a separate variable index to keep track of where in the array the next

card should go. Figure 13.3 shows what the array looks like after the first two

cards have been created.

When you work with arrays, it is convenient to have a method that displays

the contents. You have seen the pattern for traversing an array several times,

so the following method should be familiar:

228 Chapter 13 Arrays of Objects

2

0suit

rank1

0suit

rank

1 2 3 510

cards

Card Card

Figure 13.3: Memory diagram of a Card array with two cards.

public static void printDeck(Card[] cards) {

for (Card card : cards) {

System.out.println(card);

}

}

Since cards has type Card[], pronounced “card array”, an element of cards

has type Card. So println invokes the toString method in the Card class.

Then again, we don’t have to write our own printDeck method. The Arrays

class provides a toString method that invokes toString on the elements of

an array and concatenates the results:

System.out.println(Arrays.toString(cards))

13.7 Linear Search

The next method we’ll write is search, which takes an array of cards and a

Card object as parameters. It returns the index where the Card appears in

the array, or -1 if it doesn’t. This version of search uses the algorithm in

Section 8.5, which is called linear search:

13.8 Binary Search 229

public static int search(Card[] cards, Card target) {

for (int i = 0; i < cards.length; i++) {

if (cards[i].equals(target)) {

return i;

}

}

return -1;

}

The method returns as soon as it discovers the card, which means we don’t

have to traverse the entire array if we find the target. If we get to the end of

the loop, we know the card is not in the array.

If the cards in the array are not in order, there is no way to search faster than

linear search. We have to look at every card, because otherwise we can’t be

certain the card we want is not there. We call this algorithm linear search

since the number of spots in the array we need to look at increases linearly as

the size of the array increases. In other words, if the array has a length of n,

then in the worst case scenario we will have to look at all n spots in the array

(this worst case scenario is when the element we are searching for is not in the

array). In turn, we refer to the run-time of linear search as O(n) (pronounced

as Big-Oh of n). The Big-Oh notation is a common way in Computer Science

to indicate how long an algorithm will take to run in the worst case scenario.

But if the cards are in order, we can use better algorithms. Linear search is

relatively inefficient, especially for large arrays. If you pay the price to keep

the array sorted, finding elements becomes much easier. We will learn in the

next chapter how to sort arrays.

13.8 Binary Search

When you look for a word in a dictionary, you don’t search page by page from

front to back. Since the words are in alphabetical order, you probably use a

binary search algorithm:

1. Start on a page near the middle of the dictionary.

2. Compare a word on the page to the word you are looking for. If you find

it, stop.

230 Chapter 13 Arrays of Objects

3. If the word on the page comes before the word you are looking for, flip

to somewhere later in the dictionary and go to step 2.

4. If the word on the page comes after the word you are looking for, flip to

somewhere earlier in the dictionary and go to step 2.

This algorithm is much faster than linear search, because it rules out half of

the remaining words each time you make a comparison. If at any point you

find two adjacent words on the page, and your word comes between them, you

can conclude that your word is not in the dictionary.

Getting back to the array of cards, we can write a faster version of search if

we know the cards are in order:

public static int binarySearch(Card[] cards, Card target) {

int low = 0;

int high = cards.length - 1;

while (low <= high) {

int mid = (low + high) / 2; // step 1

int comp = cards[mid].compareTo(target);

if (comp == 0) { // step 2

return mid;

} else if (comp < 0) { // step 3

low = mid + 1;

} else { // step 4

high = mid - 1;

}

}

return -1;

}

First, we declare low and high variables to represent the range we are searching.

Initially, we search the entire array, from 0 to cards.length - 1.

Inside the while loop, we repeat the four steps of binary search:

1. Choose an index between low and high—call it mid—and compare the

card at mid to the target.

13.9 Tracing the Code 231

2. If you found the target, return its index (which is mid).

3. If the card at mid is lower than the target, search the range from mid + 1

to high.

4. If the card at mid is higher than the target, search the range from low

to mid - 1.

If low exceeds high, there are no cards in the range, so we terminate the loop

and return -1.

This algorithm depends on only the compareTo method of the object, so we

can use this code with any object type that provides compareTo.

13.9 Tracing the Code

To see how binary search works, it’s helpful to add the following print statement

at the beginning of the loop:

System.out.println(low + ", " + high);

Using a sorted deck of cards, we can search for the Jack of Clubs like this:

Card card = new Card(11, 0);

System.out.println(binarySearch(cards, card));

We expect to find this card at position 10 (since the Ace of Clubs is at position

0). Here is the output of binarySearch:

0, 51

0, 24

0, 11

6, 11

9, 11

10

You can see the range of cards shrinking as the while loop runs, until eventually

index 10 is found. If we search for a card that’s not in the array—like

new Card(15, 1), or the 15 of Diamonds—we get the following:

232 Chapter 13 Arrays of Objects

0, 51

26, 51

26, 37

26, 30

26, 27

-1

Each time through the loop, we cut the distance between low and high in

half. After k iterations, the number of remaining cards is 52/2k. To find the

number of iterations it takes to complete, we set 52/2k = 1 and solve for k.

The result is log2 52, which is about 5.7. So we might have to look at 5 or 6

cards, as opposed to all 52 if we did a linear search.

More generally, if the array contains n elements, binary search requires log2 n

comparisons, and linear search requires n. In turn, the run-time of binary

search is O(log2 n) For large values of n, binary search is substantially faster.

13.10 Vocabulary

encode: To represent one set of values using another set of values by constructing

a mapping between them.

class variable: A variable declared within a class as static. There is only

one copy of a class variable, no matter how many objects there are.

linear search: An algorithm that searches array elements, one by one, until

a target value is found.

binary search: An algorithm that searches a sorted array by starting in the

middle, comparing an element to the target, and eliminating half of the

remaining elements.

13.11 Exercises

The code for this chapter is in the ch12 directory of ThinkJavaCode2. See

page xviii for instructions on how to download the repository. Before you

start the exercises, we recommend that you compile and run the examples.

13.11 Exercises 233

Exercise 13.1 Encapsulate the deck-building code from Section 13.6 in a

method called makeDeck that takes no parameters and returns a fully populated

array of Cards.

Exercise 13.2 In some card games, Aces are ranked higher than Kings.

Modify the compareTo method to implement this ordering.

Exercise 13.3 In Poker a “flush” is a hand that contains five or more cards

of the same suit. A hand can contain any number of cards.

1. Write a method called suitHist that takes an array of cards as a

parameter and returns a histogram of the suits in the hand. Your solution

should traverse the array only once, as in Section 9.9.

2. Write a method called hasFlush that takes an array of cards as a

parameter and returns true if the hand contains a flush (and false

otherwise).

3. A “royal flush” includes the Ace, King, Queen, Jack, and 10 (all in the

same suit). Write a method called hasRoyal that determines whether

an array of cards contains a royal flush.

Exercise 13.4 Working with cards is more fun if you can display them on

the screen. If you have not already read Appendix C about 2D graphics, you

should read it before working on this exercise. In the code directory for this

chapter, ch12, you will find the following:

� cardset-oxymoron

A directory containing images of playing cards.

� CardTable.java

A sample program that demonstrates how to read and display images.

CardTable.java demonstrates the use of a 2D array; specifically, an array of

card images. The declaration looks like this:

private Image[][] images;

The variable images refers to a 2D array of Image objects, which are defined

in the java.awt package. Here’s the code that creates the array itself:

234 Chapter 13 Arrays of Objects

images = new Image[14][4];

The array has 14 rows (one for each rank, plus an unused row for rank 0) and

4 columns (one for each suit). Here’s the loop that populates the array:

String cardset = "cardset-oxymoron";

String suits = "cdhs";

for (int suit = 0; suit <= 3; suit++) {

char c = suits.charAt(suit);

for (int rank = 1; rank <= 13; rank++) {

String s = String.format("%s/%02d%c.gif",

cardset, rank, c);

images[rank][suit] = new ImageIcon(s).getImage();

}

}

The variable cardset is the name of the directory that contains the image

files. suits is a string that contains the single-letter abbreviations for the

suits. These strings are used to assemble s, which contains the filename

for each image. For example, when rank=1 and suit=2, the value of s is

"cardset-oxymoron/01h.gif", which is an image of the Ace of Hearts.

The last line of the loop reads the image file, extracts an Image object, and

assigns it to a location in the array, as specified by the indexes rank and suit.

For example, the image of the Ace of Hearts is stored in row 1, column 2.

If you compile and run CardTable.java, you should see images of a deck of

cards laid out on a green table. You can use this class as a starting place to

implement your own card games.

As a starting place, try placing cards on the table in the starting configuration

for the solitaire game Klondike (https://en.wikipedia.org/wiki/Klondike_

(solitaire)).

You can get the image for the back of the card by reading the file back192.gif.

https://en.wikipedia.org/wiki/Klondike_(solitaire)
https://en.wikipedia.org/wiki/Klondike_(solitaire)

Chapter 14

Objects of Arrays

In the previous chapter, we defined a class to represent cards and used an

array of Card objects to represent a deck. In this chapter, we take additional

steps toward object-oriented programming.

First we define a class to represent a deck of cards. Then we present algorithms

for shuffling and sorting decks. Finally, we introduce ArrayList from the Java

library and use it to represent collections of cards.

14.1 Decks of Cards

Here is the beginning of a Deck class that encapsulates an array of Card objects:

public class Deck {

private Card[] cards;

public Deck(int n) {

this.cards = new Card[n];

}

public Card[] getCards() {

return this.cards;

}

}

236 Chapter 14 Objects of Arrays

The constructor initializes the instance variable with an array of n cards, but

it doesn’t create any Card objects. Figure 14.1 shows what a Deck looks like

with no cards.

cardsdeck

Deck

Figure 14.1: Memory diagram of an unpopulated Deck object.

We’ll add another constructor that creates a standard 52-card array and

populates it with Card objects:

public Deck() {

this.cards = new Card[52];

int index = 0;

for (int suit = 0; suit <= 3; suit++) {

for (int rank = 1; rank <= 13; rank++) {

this.cards[index] = new Card(rank, suit);

index++;

}

}

}

This method is similar to the example in Section 13.6; we just turned it into

a constructor. We can use it to create a complete Deck like this:

Deck deck = new Deck();

Now that we have a Deck class, we have a logical place to put methods that

pertain to decks. Looking at the methods we have written so far, one obvious

candidate is printDeck from Section 13.6. Here’s how it looks, rewritten as

an instance method of Deck:

public void print() {

for (Card card : this.cards) {

System.out.println(card);

}

}

14.2 Shuffling Decks 237

Notice that when we transform a static method into an instance method, the

code is shorter. Here’s how we invoke it:

deck.print();

14.2 Shuffling Decks

For most card games, you have to shuffle the deck; that is, put the cards in a

random order. In Section 8.6 you saw how to generate random numbers, but

it is not obvious how to use them to shuffle a deck.

One possibility is to model the way humans shuffle; for example, we could

divide the deck in two halves and then choose alternately from each one.

Humans usually don’t shuffle perfectly, so after about seven iterations, the

order of the deck is pretty well randomized.

But a computer program would have the annoying property of doing a perfect

shuffle every time, which is not very random. In fact, after eight perfect

shuffles, you would find the deck back in the order you started in! For more

on this, see https://en.wikipedia.org/wiki/Faro_shuffle.

A better shuffling algorithm is to traverse the deck one card at a time, and

at each iteration, choose two cards and swap them. To outline this algorithm,

we’ll use a combination of Java statements and English comments. This

technique is sometimes called pseudocode:

public void shuffle() {

for each index i {

// choose a random number between i and length - 1

// swap the ith card and the randomly-chosen card

}

}

The nice thing about pseudocode is that it often makes clear what other

methods you are going to need. In this case, we need a method that chooses

a random integer in a given range and a method that takes two indexes and

swaps the cards at those positions:

https://en.wikipedia.org/wiki/Faro_shuffle

238 Chapter 14 Objects of Arrays

private static int randomInt(int low, int high) {

// return a random number between low and high,

// including both

}

private void swapCards(int i, int j) {

// swap the ith and the jth cards in the array

}

Methods like randomInt and swapCards are called helper methods, because

they help you solve parts of the problem. Helper methods are often private,

because they are used only by methods in the class and are not needed by

methods in other classes.

The process of writing pseudocode first and then writing helper methods to

make it work is a kind of top-down design (see https://en.wikipedia.

org/wiki/Top-down_and_bottom-up_design). It is an alternative to “incremental

development” and “encapsulation and generalization”, the other design processes

you have seen in this book.

One of the exercises at the end of the chapter asks you to write the helper

methods randomInt and swapCards, and use them to implement shuffle.

When you do the exercise, notice that randomInt is a class method and

swapCards is an instance method. Do you understand why?

14.3 Selection Sort

Now that we have shuffled the deck, we need a way to put it back in order.

There is an algorithm for sorting that is ironically similar to the algorithm for

shuffling. It’s called selection sort, because it works by traversing the array

repeatedly and selecting the lowest (or highest) remaining card each time.

During the first iteration, we find the lowest card and swap it with the card

in the zeroth position. During the ith iteration, we find the lowest card to the

right of i and swap it with the ith card. Here is pseudocode for selection sort:

https://en.wikipedia.org/wiki/Top-down_and_bottom-up_design
https://en.wikipedia.org/wiki/Top-down_and_bottom-up_design

14.4 Merge Sort 239

public void selectionSort() {

for each index i {

// find the lowest card at or to the right of i

// swap the ith card and the lowest card found

}

}

Again, the pseudocode helps with the design of the helper methods. For this

algorithm, we can reuse swapCards from the previous section, so we need only

a method to find the lowest card; we’ll call it indexLowest:

private int indexLowest(int low, int high) {

// find the lowest card between low and high

}

One of the exercises at the end of the chapter asks you to write indexLowest,

and then use it and swapCards to implement selectionSort.

14.4 Merge Sort

Selection sort is a simple algorithm, but it is not very efficient. To sort n

items, it has to traverse the array n−1 times. Each traversal takes an amount

of time proportional to n. The total time, therefore, is proportional to n2.

We will develop a more efficient algorithm called merge sort. To sort n items,

merge sort takes time proportional to n log2 n. That may not seem impressive,

but as n gets big, the difference between n2 and n log2 n can be enormous.

For example, log2 of one million is around 20. So if you had to sort a million

numbers, merge sort would require 20 million steps. But selection sort would

require one trillion steps!

The idea behind merge sort is this: if you have two decks, each of which has

already been sorted, you can quickly merge them into a single, sorted deck.

Try this out with a deck of cards:

1. Form two decks with about 10 cards each, and sort them so they are face

up with the lowest cards on top. Place the decks in front of you.

240 Chapter 14 Objects of Arrays

2. Compare the top card from each deck and choose the lower one. Flip it

over and add it to the merged deck.

3. Repeat step 2 until one of the decks is empty. Then take the remaining

cards and add them to the merged deck.

The result should be a single sorted deck. In the next few sections, we’ll

explain how to implement this algorithm in Java.

14.5 Subdecks

The first step of merge sort is to split the deck into two “subdecks”, each with

about half of the cards. So we need a method that takes a deck, and a range

of indexes, and returns a new deck that contains the specified subset of cards:

public Deck subdeck(int low, int high) {

Deck sub = new Deck(high - low + 1);

for (int i = 0; i < sub.cards.length; i++) {

sub.cards[i] = this.cards[low + i];

}

return sub;

}

The first line creates an unpopulated Deck object that contains an array

of null references. Inside the for loop, the subdeck gets populated with

references to Card objects.

The length of the subdeck is high - low + 1, because both the low card and

the high card are included. This sort of computation can be confusing, and

forgetting the “+ 1” often leads to off-by-one errors. Drawing a picture is

usually the best way to avoid them.

Figure 14.2 is a memory diagram of a subdeck with low = 0 and high = 4.

The result is a hand with five cards that are shared with the original deck;

that is, they are aliased.

Aliasing might not be a good idea, because changes to shared cards would be

reflected in multiple decks. But since Card objects are immutable, this kind of

aliasing is not a problem. And it saves some memory because we don’t create

duplicate Card objects.

14.6 Merging Decks 241

deck cards

sub cards

Deck

Deck

Figure 14.2: Memory diagram showing the effect of subdeck.

14.6 Merging Decks

The next helper method we need is merge, which takes two sorted subdecks

and returns a new deck containing all cards from both decks, in order. Here’s

what the algorithm looks like in pseudocode, assuming the subdecks are named

d1 and d2:

private static Deck merge(Deck d1, Deck d2) {

// create a new deck, d3, big enough for all the cards

// use the index i to keep track of where we are at in

// the first deck, and the index j for the second deck

int i = 0;

int j = 0;

// the index k traverses the result deck

for (int k = 0; k < d3.length; k++) {

// if d1 is empty, use top card from d2

// if d2 is empty, use top card from d1

// otherwise, compare the top two cards

// add lowest card to the new deck at k

// increment i or j (depending on card)

}

// return the new deck

}

242 Chapter 14 Objects of Arrays

An exercise at the end of the chapter asks you to implement merge. It’s a

little tricky, so be sure to test it with different subdecks. Once your merge

method is working, you can use it to write a simplified version of merge sort:

public Deck almostMergeSort() {

// divide the deck into two subdecks

// sort the subdecks using selectionSort

// merge the subdecks, return the result

}

If you have working versions of subdeck, selectionSort, and merge, you

should have no trouble getting this method working. But it is still not very

efficient, because it uses selectionSort to sort the subdecks. We can make

it more efficient if we use mergeSort instead, but that means we have to make

it recursive!

14.7 Adding Recursion

To make mergeSort work recursively, you have to add a base case; otherwise,

it repeats forever. The simplest base case is a subdeck with one card. If there

is only one card, it can’t be out of order, so we consider it sorted. And if it is

already sorted, we can just return it.

And it will turn out to be convenient if we handle another base case, a subdeck

with zero cards. By the same logic, if there are no cards, they can’t be out of

order. So we consider an empty deck to be sorted, and return it.

With these base cases, a recursive version of mergeSort looks like this:

public Deck mergeSort() {

// if the deck has 0 or 1 cards, return it

// otherwise, divide the deck into two subdecks

// sort the subdecks using mergeSort

// merge the subdecks

// return the result

}

As usual, there are two ways to think about recursive programs: you can follow

the flow of execution, or you can make the “leap of faith” (see Section 6.4).

This example should encourage you to make the leap of faith.

14.8 Static Context 243

When you use selectionSort to sort the subdecks, you don’t feel compelled

to follow the flow of execution. You assume it works because you already

debugged it. When you make mergeSort recursive, you just replace one sorting

algorithm with another. There is no reason to read the program differently.

Well, almost. You have to think about the base cases and make sure that you

reach them. But other than that, writing the recursive version should be no

problem. As an exercise at the end of this chapter, you’ll have a chance to

finish off this example.

14.8 Static Context

Figure 14.3 shows a UML class diagram for Deck, including the instance

variable, cards, and the methods we have so far. In UML diagrams, private

attributes and methods begin with a minus sign (-) and static methods are

underlined.

Figure 14.3: UML diagram for the Deck class.

The helper methods randomInt and merge are static, because they do not

read or write any instance variables. All other methods are instance methods,

because they access the instance variable, cards.

When you have static methods and instance methods in the same class, it is

easy to get them confused.

244 Chapter 14 Objects of Arrays

To invoke an instance method, you need an instance:

Deck deck = new Deck();

deck.print(); // correct

Deck with a capital D is a class, and deck with a lowercase d is an object.

Say you try to invoke print like this:

Deck.print(); // wrong!

You get a compiler error like this:

Non-static method print() cannot be referenced from a

static context.

By “static context”, the compiler means you are trying to invoke a method in

a context that requires a static method.

On the other hand, if you have a Deck object, you can use it to invoke a static

method:

Deck deck = new Deck();

int i = deck.randomInt(0, 51); // legal, but not good style

This is legal, but it is not considered good style, because someone reading this

code would expect randomInt to be an instance method.

Another common error is to use this in a static method. For example, say

you write something like this:

private static Deck merge(Deck d1, Deck d2) {

return this.cards; // wrong!

}

You get a compiler error like this:

Non-static variable this cannot be referenced from a

static context.

The problem is that cards is an instance variable, so it is non-static; therefore,

you can’t access it from a static method. In general, you can’t use this in a

static method, because a static method is not invoked on an object.

For beginners, error messages about non-static context can be confusing and

frustrating. We hope this section helps.

14.9 Piles of Cards 245

14.9 Piles of Cards

Now that we have classes that represent cards and decks, let’s use them to

make a game. One of the simplest card games that children play is called

“War” (see https://en.wikipedia.org/wiki/War_(card_game)).

Initially, the deck is divided evenly into two piles, one for each player. During

each round, each player takes the top card from their pile and places it, face

up, in the center. Whoever has the highest-ranking card, ignoring suit, takes

the two cards and adds them to the bottom of their pile. The game continues

until one player has won the entire deck.

We could use the Deck class to represent the individual piles. However, our

implementation of Deck uses a Card array, and the length of an array can’t

change. As the game progresses, we need to be able to add and remove cards

from the piles.

We can solve this problem with an ArrayList, which is in the java.util

package. An ArrayList is a collection, which is an object that contains

other objects. It provides methods to add and remove elements, and it grows

and shrinks automatically.

We define a new class named Pile to represent a pile of cards. It uses an

ArrayList to store Card objects:

public class Pile {

private ArrayList<Card> cards;

public Pile() {

this.cards = new ArrayList<Card>();

}

}

When you declare an ArrayList, you specify the type it contains in angle

brackets (<>). This declaration says that cards is not just an ArrayList; it’s

an ArrayList of Card objects. The constructor initializes this.cards with

an empty ArrayList.

Now let’s think about the methods we need to play the game. At the beginning

of each round, each player draws a card from the top of their pile. So we define

a method to do that:

https://en.wikipedia.org/wiki/War_(card_game)

246 Chapter 14 Objects of Arrays

public Card popCard() {

return this.cards.remove(0); // from the top of the pile

}

popCard removes the Card at the beginning of the ArrayList, which we think

of as the top of the pile. Because we use ArrayList.remove, it automatically

shifts the remaining cards to fill the gap.

At the end of each round, the winner adds cards to the bottom of their pile.

So we define a method to do that:

public void addCard(Card card) {

this.cards.add(card); // to the bottom of the pile

}

ArrayList provides a method, add, that adds an element to the end of the

collection, which we think of as the bottom of the pile.

To know when to stop the game, we have to check if one of the piles is empty.

Here’s a method to do that:

public boolean isEmpty() {

return this.cards.isEmpty();

}

So far, these methods don’t do very much; they just invoke methods on the

instance variable, cards. Methods like these are called wrapper methods

because they wrap one method with another.

Finally, to start the game, we need to divide the deck into two equal parts.

We can do that with subdeck from Section 14.5 and a new method, addDeck:

public void addDeck(Deck deck) {

for (Card card : deck.getCards()) {

this.cards.add(card);

}

}

addDeck takes a Deck object, loops through the cards, and adds them to the

Pile. Notice that it does not remove the cards from the Deck, so the Deck

and the Pile share cards. But that won’t be a problem because cards are

immutable.

14.10 Playing War 247

14.10 Playing War

Now we can use Deck and Pile to implement the game. We’ll start by creating

a deck and shuffling:

Deck deck = new Deck();

deck.shuffle();

Then we divide the Deck into two piles:

Pile p1 = new Pile();

p1.addDeck(deck.subdeck(0, 25));

Pile p2 = new Pile();

p2.addDeck(deck.subdeck(26, 51));

The game itself is a loop that repeats until one of the piles is empty. At each

iteration, we draw a card from each pile and compare their ranks:

while (!p1.isEmpty() && !p2.isEmpty()) {

// pop a card from each pile

Card c1 = p1.popCard();

Card c2 = p2.popCard();

// compare the cards

int diff = c1.getRank() - c2.getRank();

if (diff > 0) {

p1.addCard(c1);

p1.addCard(c2);

} else if (diff < 0) {

p2.addCard(c1);

p2.addCard(c2);

} else {

// it's a tie

}

If the two cards have the same rank, it’s a tie. In that case, each player draws

four more cards. Whoever has the higher fourth card takes all cards in play.

If there’s another tie, they draw another four cards, and so on.

248 Chapter 14 Objects of Arrays

One of the exercises at the end of this chapter asks you to implement the else

block when there’s a tie.

After the while loop ends, we display the winner based on which pile is not

empty:

if (p2.isEmpty()) {

System.out.println("Player 1 wins!");

} else {

System.out.println("Player 2 wins!");

}

ArrayList provides many other methods that we didn’t use for this example.

Take a minute to read the documentation, which you can find by doing a web

search for “Java ArrayList”.

14.11 Vocabulary

pseudocode: A way of designing programs by writing rough drafts in a

combination of English and Java.

helper method: Amethod that implements part of a more complex algorithm;

often it is not particularly useful on its own.

top-down design: Breaking down a problem into subproblems, and solving

each subproblem one at a time.

selection sort: A simple sorting algorithm that searches for the smallest or

largest element n times.

merge sort: A recursive sorting algorithm that divides an array into two

parts, sorts each part (using merge sort), and merges the results.

off-by-one: A common programming mistake that results in iterating one

time too many, or too few.

static context: The parts of a class that run without reference to a specific

instance of the class.

collection: A Java library class, like ArrayList, that represents a group of

objects.

14.12 Exercises 249

wrapper method: A method that calls another method without doing much

additional work.

14.12 Exercises

The code for this chapter is in the ch13 directory of ThinkJavaCode2. See

page xviii for instructions on how to download the repository. Before you

start the exercises, we recommend that you compile and run the examples.

Exercise 14.1 Write a toStringmethod for the Deck class. It should return

a single string that represents the cards in the deck. When it’s printed, this

string should display the same results as the print method in Section 14.1.

Hint: You can use the + operator to concatenate strings, but that is not very

efficient. Consider using StringBuilder instead; see Section 11.11.

Exercise 14.2 The goal of this exercise is to implement the shuffling algorithm

from this chapter.

1. In the repository for this book, you should find the file named Deck.java.

Check that you can compile it in your environment.

2. Implement the randomInt method. You can use the nextInt method

provided by java.util.Random, which you saw in Section 8.6.

Hint: To avoid creating a Random object every time randomInt is invoked,

consider defining a class variable.

3. Write a swapCards method that takes two indexes and swaps the cards

at the given locations.

4. Fill in the shuffle method by using the algorithm in Section 14.2.

Exercise 14.3 The goal of this exercise is to implement the sorting algorithms

from this chapter. Use the Deck.java file from the previous exercise or create

a new one from scratch.

1. Implement the indexLowest method. Use the Card.compareTo method

to find the lowest card in a given range of the deck, from lowIndex to

highIndex, including both.

250 Chapter 14 Objects of Arrays

2. Fill in selectionSort by using the algorithm in Section 14.3.

3. Using the pseudocode in Section 14.4, implement the merge method.

The best way to test it is to build and shuffle a deck. Then use subdeck

to form two small subdecks, and use selection sort to sort them. Finally,

pass the two halves to merge and see if it works.

4. Fill in almostMergeSort, which divides the deck in half, then uses

selectionSort to sort the two halves, and uses merge to create a new,

sorted deck. You should be able to reuse code from the previous step.

5. Implement mergeSort recursively. Remember that selectionSort is

void and mergeSort returns a new Deck, which means that they get

invoked differently:

deck.selectionSort(); // modifies an existing deck

deck = deck.mergeSort(); // replaces old deck with new

Exercise 14.4 You can learn more about the sorting algorithms presented in

this chapter at https://www.toptal.com/developers/sorting-algorithms.

This site provides explanations of the algorithms, along with animations that

show how they work. It also includes an analysis of their efficiency.

For example, “insertion sort” is an algorithm that inserts elements into place,

one at a time. Read about it on the website and play the animations. Then

write a method named insertionSort that implements this algorithm.

One goal of this exercise is to practice top-down design. Your solution should

use a helper method, named insert, that implements the inner loop of the

algorithm. insertionSort should invoke this method n− 1 times.

Exercise 14.5 Find and open the file War.java in the repository. The main

method contains all the code from the last section of this chapter. Check that

you can compile and run this code before proceeding.

The program is incomplete; it does not handle the case when two cards have

the same rank. Finish implementing the main method, beginning at the line

that says: // it's a tie.

When there’s a tie, draw three cards from each pile and store them in a

collection, along with the original two. Then draw one more card from each

pile and compare them. Whoever wins the tie takes all ten of these cards.

https://www.toptal.com/developers/sorting-algorithms

14.12 Exercises 251

If one pile does not have at least four cards, the game ends immediately. If a

tie ends with a tie, draw three more cards, and so on.

Notice that this program depends on Deck.shuffle, so you might have to do

Exercise 14.2 first.

252 Chapter 14 Objects of Arrays

Chapter 15

Extending Classes

In this chapter, we present a more comprehensive example of object-oriented

programming.

Crazy Eights is a classic card game for two or more players. The main objective

is to be the first player to get rid of all your cards. Here’s how to play:

� Deal five or more cards to each player, and then deal one card face up to

create the “discard pile”. Place the remaining cards face down to create

the “draw pile”.

� Each player takes turns placing a single card on the discard pile. The

card must match the rank or suit of the previously played card, or be an

eight, which is a “wild card”.

� When players don’t have a matching card or an eight, they must draw

new cards until they get one.

� If the draw pile ever runs out, the discard pile is shuffled (except the top

card) and becomes the new draw pile.

� As soon as a player has no cards, the game ends, and all other players

score penalty points for their remaining cards. Eights are worth 20, face

cards are worth 10, and all others are worth their rank.

You can read https://en.wikipedia.org/wiki/Crazy_Eights for more details,

but we have enough to get started.

https://en.wikipedia.org/wiki/Crazy_Eights

254 Chapter 15 Extending Classes

15.1 CardCollection

To implement Crazy Eights, we need to represent a deck of cards, a discard

pile, a draw pile, and a hand for each player. And we need to be able to deal,

draw, and discard cards.

The Deck and Pile classes from the previous chapter meet some of these

requirements. But unless we make some changes, neither of them represents a

hand of cards very well.

Furthermore, Deck and Pile are essentially two versions of the same code: one

based on arrays, and the other based on ArrayList. It would be helpful to

combine their features into one class that meets the needs of both.

We will define a class named CardCollection and add the code we want one

step at a time. Since this class will represent different piles and hands of cards,

we’ll add a label attribute to tell them apart:

public class CardCollection {

private String label;

private ArrayList<Card> cards;

public CardCollection(String label) {

this.label = label;

this.cards = new ArrayList<Card>();

}

}

As with the Pile class, we need a way to add cards to the collection. Here is

the addCard method from the previous chapter:

public void addCard(Card card) {

this.cards.add(card);

}

Until now, we have used this explicitly to make it easy to identify attributes.

Inside addCard and other instance methods, you can access instance variables

without using the keyword this. So from here on, we will drop it:

15.1 CardCollection 255

public void addCard(Card card) {

cards.add(card);

}

We also need to be able to remove cards from the collection. The following

method takes an index, removes the card at that location, and shifts the

following cards left to fill the gap:

public Card popCard(int i) {

return cards.remove(i);

}

If we are dealing cards from a shuffled deck, we don’t care which card gets

removed. It is most efficient to choose the last one, so we don’t have to shift

any cards left. Here is an overloaded version of popCard that removes and

returns the last card:

public Card popCard() {

int i = cards.size() - 1; // from the end of the list

return popCard(i);

}

CardCollection also provides isEmpty, which returns true if there are no

cards left, and size, which returns the number of cards:

public boolean isEmpty() {

return cards.isEmpty();

}

public int size() {

return cards.size();

}

To access the elements of an ArrayList, you can’t use the array [] operator.

Instead, you have to use the methods get and set. Here is a wrapper for get:

public Card getCard(int i) {

return cards.get(i);

}

lastCard gets the last card (but doesn’t remove it):

256 Chapter 15 Extending Classes

public Card lastCard() {

int i = cards.size() - 1;

return cards.get(i);

}

In order to control the ways card collections are modified, we don’t provide

a wrapper for set. The only modifiers we provide are the two versions of

popCard and the following version of swapCards:

public void swapCards(int i, int j) {

Card temp = cards.get(i);

cards.set(i, cards.get(j));

cards.set(j, temp);

}

Finally, we use swapCards to implement shuffle, which we described in

Section 14.2:

public void shuffle() {

Random random = new Random();

for (int i = cards.size() - 1; i > 0; i--) {

int j = random.nextInt(i + 1);

swapCards(i, j);

}

}

15.2 Inheritance

At this point, we have a class that represents a collection of cards. It provides

functionality common to decks of cards, piles of cards, hands of cards, and

potentially other collections.

However, each kind of collection will be slightly different. Rather than add

every possible feature to CardCollection, we can use inheritance to define

subclasses. A subclass is a class that “extends” an existing class; that is, it

has the attributes and methods of the existing class, plus more.

Here is the complete definition of our new and improved Deck class:

15.2 Inheritance 257

public class Deck extends CardCollection {

public Deck(String label) {

super(label);

for (int suit = 0; suit <= 3; suit++) {

for (int rank = 1; rank <= 13; rank++) {

addCard(new Card(rank, suit));

}

}

}

}

The first line uses the keyword extends to indicate that Deck extends the

class CardCollection. That means a Deck object has the same instance

variables and methods as a CardCollection. Another way to say the same

thing is that Deck “inherits from” CardCollection. We could also say that

CardCollection is a superclass, and Deck is one of its subclasses.

In Java, classes may extend only one superclass. Classes that do not specify a

superclass with extends automatically inherit from java.lang.Object. So in

this example, Deck extends CardCollection, which in turn extends Object.

The Object class provides the default equals and toString methods, among

other things.

Constructors are not inherited, but all other public attributes and methods

are. The only additional method in Deck, at least for now, is a constructor.

So you can create a Deck object like this:

Deck deck = new Deck("Deck");

The first line of the constructor uses super, which is a keyword that refers to

the superclass of the current class. When super is used as a method, as in

this example, it invokes the constructor of the superclass.

So in this case, super invokes the CardCollection constructor, which initializes

the attributes label and cards. When it returns, the Deck constructor

resumes and populates the (empty) ArrayList with Card objects.

That’s it for the Deck class. Next we need a way to represent a hand, which

is the collection of cards held by a player, and a pile, which is a collection of

258 Chapter 15 Extending Classes

cards on the table. We could define two classes, one for hands and one for

piles, but there is not much difference between them. So we’ll use one class,

called Hand, for both hands and piles. Here’s what the definition looks like:

public class Hand extends CardCollection {

public Hand(String label) {

super(label);

}

public void display() {

System.out.println(getLabel() + ": ");

for (int i = 0; i < size(); i++) {

System.out.println(getCard(i));

}

System.out.println();

}

}

Like Deck, the Hand class extends CardCollection. So it inherits methods like

getLabel, size, and getCard, which are used in display. Hand also provides

a constructor, which invokes the constructor of CardCollection.

In summary, a Deck is just like a CardCollection, but it provides a different

constructor. And a Hand is just like a CardCollection, but it provides an

additional method, display.

15.3 Dealing Cards

To begin the game, we need to deal cards to each of the players. And during

the game, we need to move cards between hands and piles. If we add the

following method to CardCollection, it can meet both of these requirements:

public void deal(CardCollection that, int n) {

for (int i = 0; i < n; i++) {

Card card = popCard();

that.addCard(card);

}

}

15.3 Dealing Cards 259

The deal method removes cards from the collection it is invoked on, this,

and adds them to the collection it gets as a parameter, that. The second

parameter, n, is the number of cards to deal. We will use this method to

implement dealAll, which deals (or moves) all of the remaining cards:

public void dealAll(CardCollection that) {

int n = cards.size();

deal(that, n);

}

At this point, we can create a Deck and start dealing cards. Here’s a simple

example that deals five cards to a hand, and deals the rest into a draw pile:

Deck deck = new Deck("Deck");

deck.shuffle();

Hand hand = new Hand("Hand");

deck.deal(hand, 5);

hand.display();

Hand drawPile = new Hand("Draw Pile");

deck.dealAll(drawPile);

System.out.printf("Draw Pile has %d cards.\n",

drawPile.size());

Because the deck is shuffled randomly, you should get a different hand each

time you run this example. The output will look something like this:

Hand:

5 of Diamonds

Ace of Hearts

6 of Clubs

6 of Diamonds

2 of Clubs

Draw Pile has 47 cards.

If you are a careful reader, you might notice something strange about this

example. Take another look at the definition of deal. Notice that the first

parameter is supposed to be a CardCollection. But we invoked it like this:

260 Chapter 15 Extending Classes

Hand hand = new Hand("Hand");

deck.deal(hand, 5);

The argument is a Hand, not a CardCollection. So why is this example legal?

It’s because Hand is a subclass of CardCollection, so a Hand object is also

considered to be a CardCollection object. If a method expects a CardCollection,

you can give it a Hand, a Deck, or a CardCollection.

But it doesn’t work the other way around: not every CardCollection is

a Hand, so if a method expects a Hand, you have to give it a Hand, not a

CardCollection or a Deck.

If it seems strange that an object can belong to more than one type, remember

that this happens in real life too. Every cat is also a mammal, and every

mammal is also an animal. But not every animal is a mammal, and not every

mammal is a cat.

15.4 The Player Class

The Deck and Hand classes we have defined so far could be used for any card

game; we have not yet implemented any of the rules specific to Crazy Eights.

And that’s probably a good thing, since it makes it easy to reuse these classes

if we want to make another game in the future.

But now it’s time to implement the rules. We’ll use two classes: Player,

which encapsulates player strategy, and Eights, which creates and maintains

the state of the game. Here is the beginning of the Player definition:

public class Player {

private String name;

private Hand hand;

public Player(String name) {

this.name = name;

this.hand = new Hand(name);

}

15.4 The Player Class 261

A Player has two private attributes: a name and a hand. The constructor

takes the player’s name as a string and saves it in an instance variable. In this

example, we have to use this to distinguish between the instance variable and

the parameter with the same name.

The primary method that Player provides is play, which decides which card

to discard during each turn:

public Card play(Eights eights, Card prev) {

Card card = searchForMatch(prev);

if (card == null) {

card = drawForMatch(eights, prev);

}

return card;

}

The first parameter is a reference to the Eights object that encapsulates the

state of the game (coming up in the next section). The second parameter,

prev, is the card on top of the discard pile.

play invokes two helper methods: searchForMatch and drawForMatch. Since

we have not written them yet, this is an example of top-down design.

Here’s searchForMatch, which looks in the player’s hand for a card that

matches the previously played card:

public Card searchForMatch(Card prev) {

for (int i = 0; i < hand.size(); i++) {

Card card = hand.getCard(i);

if (cardMatches(card, prev)) {

return hand.popCard(i);

}

}

return null;

}

The strategy is pretty simple: the for loop searches for the first card that’s

legal to play and returns it. If there are no cards that match, it returns null.

In that case, we have to draw cards until we get a match, which is what

drawForMatch does:

262 Chapter 15 Extending Classes

public Card drawForMatch(Eights eights, Card prev) {

while (true) {

Card card = eights.drawCard();

System.out.println(name + " draws " + card);

if (cardMatches(card, prev)) {

return card;

}

hand.addCard(card);

}

}

The while loop runs until it finds a match (we’ll assume for now that it always

finds one). The loop uses the Eights object to draw a card. If it matches,

drawForMatch returns the card. Otherwise it adds the card to the player’s

hand and repeats.

Both searchForMatch and drawForMatch use cardMatches, which is a static

method, also defined in Player. This method is a straightforward translation

of the rules of the game:

public static boolean cardMatches(Card card1, Card card2) {

return card1.getSuit() == card2.getSuit()

|| card1.getRank() == card2.getRank()

|| card1.getRank() == 8;

}

Finally, Player provides a score method, which computes penalty points for

cards left in a player’s hand at the end of the game.

15.5 The Eights Class

In Section 14.2, we introduced top-down design. In this way of developing

programs, we identify high-level goals, like shuffling a deck, and break them

into smaller problems, like choosing a random element or swapping two elements.

In this section, we present bottom-up design, which goes the other way

around: first we identify simple pieces we need and then we assemble them

into more-complex algorithms.

15.5 The Eights Class 263

Looking at the rules of Crazy Eights, we can identify some of the methods

we’ll need:

� Create the deck, the players, and the discard and draw piles. Deal the

cards and set up the game. (Eights constructor)

� Check whether the game is over. (isDone)

� If the draw pile is empty, shuffle the discard pile and move the cards into

the draw pile. (reshuffle)

� Draw a card, reshuffling the discard pile if necessary. (drawCard)

� Keep track of whose turn it is, and switch from one player to the next.

(nextPlayer)

� Display the state of the game, and wait for the user before running the

next turn. (displayState)

Now we can start implementing the pieces. Here is the beginning of the class

definition for Eights, which encapsulates the state of the game:

public class Eights {

private Player one;

private Player two;

private Hand drawPile;

private Hand discardPile;

private Scanner in;

In this version, there are always two players. One of the exercises at the end of

the chapter asks you to modify this code to handle more players. The Eights

class also includes a draw pile, a discard pile, and a Scanner, which we will

use to prompt the user after each turn.

The constructor for Eights initializes the instance variables and deals the

cards, similar to Section 15.3. The next piece we’ll need is a method that

checks whether the game is over. If either hand is empty, we’re done:

public boolean isDone() {

return one.getHand().isEmpty() || two.getHand().isEmpty();

}

264 Chapter 15 Extending Classes

When the draw pile is empty, we have to shuffle the discard pile. Here is a

method for that:

public void reshuffle() {

Card prev = discardPile.popCard();

discardPile.dealAll(drawPile);

discardPile.addCard(prev);

drawPile.shuffle();

}

The first line saves the top card from discardPile. The next line transfers

the rest of the cards to drawPile. Then we put the saved card back into

discardPile and shuffle drawPile. We can use reshuffle as part of the

draw method:

public Card drawCard() {

if (drawPile.isEmpty()) {

reshuffle();

}

return drawPile.popCard();

}

The nextPlayer method takes the current player as a parameter and returns

the player who should go next:

public Player nextPlayer(Player current) {

if (current == one) {

return two;

} else {

return one;

}

}

The last method from our bottom-up design is displayState. It displays the

hand of each player, the contents of the discard pile, and the number of cards

in the draw pile. Finally, it waits for the user to press the Enter key:

15.5 The Eights Class 265

public void displayState() {

one.display();

two.display();

discardPile.display();

System.out.println("Draw pile:");

System.out.println(drawPile.size() + " cards");

in.nextLine();

}

Using these pieces, we can write takeTurn, which executes one player’s turn.

It reads the top card off the discard pile and passes it to player.play, which

you saw in the previous section. The result is the card the player chose, which

is added to the discard pile:

public void takeTurn(Player player) {

Card prev = discardPile.lastCard();

Card next = player.play(this, prev);

discardPile.addCard(next);

System.out.println(player.getName() + " plays " + next);

System.out.println();

}

Finally, we use takeTurn and the other methods to write playGame:

public void playGame() {

Player player = one;

// keep playing until there's a winner

while (!isDone()) {

displayState();

takeTurn(player);

player = nextPlayer(player);

}

// display the final score

one.displayScore();

two.displayScore();

}

266 Chapter 15 Extending Classes

Done! The result of bottom-up design is similar to top-down: we have a high-

level method that calls helper methods. The difference is the development

process we used to arrive at this solution.

15.6 Class Relationships

This chapter demonstrates two common relationships between classes:

composition: Instances of one class contain references to instances of another

class. For example, an instance of Eights contains references to two

Player objects, two Hand objects, and a Scanner.

inheritance: One class extends another class. For example, Hand extends

CardCollection, so every instance of Hand is also a CardCollection.

Composition is also known as a HAS-A relationship, as in “Eights has a

Scanner”. Inheritance is also known as an IS-A relationship, as in “Hand is a

CardCollection”. This vocabulary provides a concise way to talk about an

object-oriented design.

There is also a standard way to represent these relationships graphically in

UML class diagrams. As you saw in Section 11.7, the UML representation of

a class is a box with three sections: the class name, the attributes, and the

methods. The latter two sections are optional when showing relationships.

Figure 15.1: UML diagram for the classes in this chapter.

Relationships between classes are represented by arrows: composition arrows

have a standard arrow head, and inheritance arrows have a hollow triangle head

(usually pointing up). Figure 15.1 shows the classes defined in this chapter

and the relationships among them.

15.7 Vocabulary 267

UML is an international standard, so almost any software engineer in the world

could look at this diagram and understand our design. And class diagrams

are only one of many graphical representations defined in the UML standard.

15.7 Vocabulary

inheritance: The ability to define a new class that has the same instance

variables and methods of an existing class.

subclass: A class that inherits from, or extends, an existing class.

superclass: An existing class that is extended by another class.

bottom-up design: A way of developing programs by identifying simple

pieces, implementing them first, and then assembling them into more-

complex algorithms.

HAS-A: A relationship between two classes in which one class “has” an

instance of another class as one of its attributes.

IS-A: A relationship between two classes in which one class extends another

class; the subclass “is” an instance of the superclass.

15.8 Exercises

The code for this chapter is in the ch14 directory of ThinkJavaCode2. See

page xviii for instructions on how to download the repository. Before you

start the exercises, we recommend that you compile and run the examples.

Exercise 15.1 Design a better strategy for the Player.play method. For

example, if there are multiple cards you can play, and one of them is an 8, you

might want to play the 8.

Think of other ways you can minimize penalty points, such as playing the

highest-ranking cards first. Write a new class that extends Player and overrides

play to implement your strategy.

268 Chapter 15 Extending Classes

Exercise 15.2 Write a loop that plays the game 100 times and keeps track

of how many times each player wins. If you implemented multiple strategies in

the previous exercise, you can play them against each other to evaluate which

one works best.

Hint: Design a Genius class that extends Player and overrides the play

method, and then replace one of the players with a Genius object.

Exercise 15.3 One limitation of the program we wrote in this chapter is that

it handles only two players. Modify the Eights class to create an ArrayList

of players, and modify nextPlayer to select the next player.

Exercise 15.4 When we designed the program for this chapter, we tried to

minimize the number of classes. As a result, we ended up with a few awkward

methods. For example, cardMatches is a static method in Player, but it

would be more natural if it were an instance method in Card.

The problem is that Card is supposed to be useful for any card game, not just

Crazy Eights. You can solve this problem by adding a new class, EightsCard,

that extends Card and provides a method, match, that checks whether two

cards match according to the rules of Crazy Eights.

At the same time, you could create a new class, EightsHand, that extends

Hand and provides a method, scoreHand, that adds up the scores of the cards

in the hand. And while you’re at it, you could add a method named scoreCard

to EightsCard.

Whether or not you actually make these changes, draw a UML class diagram

that shows this alternative object hierarchy.

Chapter 16

Arrays of Arrays

The last three chapters of this book use 2D graphics to illustrate more advanced

object-oriented concepts. If you haven’t yet read Appendix C, you might want

to read it now and become familiar with the Canvas, Color, and Graphics

classes from the java.awt package. In this chapter, we use these classes to

draw images and animations, and to run graphical simulations.

16.1 Conway’s Game of Life

The Game of Life, or GoL for short, was developed by John Conway and

popularized in 1970 in Martin Gardner’s column in Scientific American. Conway

calls it a “zero-player game” because no players are needed to choose strategies

or make decisions. After you set up the initial conditions, you watch the game

play itself. That turns out to be more interesting than it sounds; you can read

about it at https://en.wikipedia.org/wiki/Conway’s_Game_of_Life.

The game board is a 2D grid of square cells. Each cell is either “alive” or

“dead”; the color of the cell indicates its state. Figure 16.1 shows an example

grid configuration; the five black cells are alive.

The game proceeds in time steps, during which each cell interacts with its

neighbors in the eight adjacent cells. At each time step, the following rules

are applied:

https://en.wikipedia.org/wiki/Conway's_Game_of_Life

270 Chapter 16 Arrays of Arrays

Figure 16.1: A “Glider” in the Game of Life.

� A live cell with fewer than two live neighbors dies, as if by underpopulation.

� A live cell with more than three live neighbors dies, as if by overpopulation.

� A dead cell with exactly three live neighbors becomes a live cell, as if by

reproduction.

Notice some consequences of these rules. If you start with a single live cell, it

dies. If all cells are dead, no cells come to life. But if you have four cells in a

square, they keep each other alive, so that’s a “stable” configuration.

Another initial configuration is shown in Figure 16.2. If you start with three

horizontal cells, the center cell lives, the left and right cells die, and the top

and bottom cells come to life. The result after the first time step is three

vertical cells.

During the next time step, the center cell lives, the top and bottom cells die,

and the left and right cells come to life. The result is three horizontal cells, so

we’re back where we started, and the cycle repeats forever.

Figure 16.2: A “Blinker” in the Game of Life.

Patterns like this are called “periodic”, because they repeat after a period of

two or more time steps. But they are also considered stable, because the total

number of live cells doesn’t grow over time.

16.2 The Cell Class 271

Most simple starting configurations either die out quickly or reach a stable

configuration. But there are a few starting conditions that display remarkable

complexity. One of those is the R-pentomino (https://www.conwaylife.

com/wiki/R-pentomino), which starts with only five cells, runs for 1,103 time

steps, and ends in a stable configuration with 116 live cells.

In the following sections, we’ll implement the Game of Life in Java. We’ll first

implement the cells, then the grid of cells, and finally the game itself.

16.2 The Cell Class

When drawing a cell, we’ll need to know its location on the screen and size

in pixels. To represent the location, we use the x and y coordinates of the

upper-left corner. And to represent the size, we use an integer, size.

To represent the state of a cell, we use an integer, state, which is 0 for dead

cells and 1 for live cells. We could use a boolean instead, but it’s good practice

to design classes to be reusable (e.g., for other games that have more states).

Here is a Cell class that declares these instance variables:

public class Cell {

private final int x;

private final int y;

private final int size;

private int state;

}

Notice that x, y, and size are constants. Once the cell is created, we don’t

want it to move or change size. But state can and should change, so it is not

a constant.

The next step is to write a constructor. Here’s one that takes x, y, and size

as parameters, and sets state to a default value:

public Cell(int x, int y, int size) {

this.x = x;

this.y = y;

this.size = size;

this.state = 0;

}

https://www.conwaylife.com/wiki/R-pentomino
https://www.conwaylife.com/wiki/R-pentomino

272 Chapter 16 Arrays of Arrays

The following method draws a cell. Like the paint method in Appendix C, it

takes a graphics context as a parameter:

public static final Color[] COLORS = {Color.WHITE, Color.BLACK};

public void draw(Graphics g) {

g.setColor(COLORS[state]);

g.fillRect(x + 1, y + 1, size - 1, size - 1);

g.setColor(Color.LIGHT_GRAY);

g.drawRect(x, y, size, size);

}

The draw method uses the state of the cell to select a color from an array of

Color objects. Then it uses to fillRect to draw the center of the cell and

drawRect to draw a light-gray border.

We also need methods to get and set the cell’s state. We could just provide

getState and setState, but the code will be more readable if we provide

methods customized for the Game of Life:

public boolean isOff() {

return state == 0;

}

public boolean isOn() {

return state == 1;

}

public void turnOff() {

state = 0;

}

public void turnOn() {

state = 1;

}

16.3 Two-Dimensional Arrays

To represent a grid of cells, we can use a multidimensional array. To create

a 2D array, we specify the number of rows and columns:

16.3 Two-Dimensional Arrays 273

int rows = 4;

int cols = 3;

Cell[][] array = new Cell[rows][cols];

The result is an array with four rows and three columns. Initially, the elements

of the array are null. We can fill the array with Cell objects like this:

for (int r = 0; r < rows; r++) {

int y = r * size;

for (int c = 0; c < cols; c++) {

int x = c * size;

array[r][c] = new Cell(x, y, size);

}

}

The loop variables r and c are the row and column indexes of the cells. The

variables x and y are the coordinates, respectively. For example, if size is 10

pixels, the cell at index (1, 2) would be at coordinates (10, 20) on the screen.

In Java, a 2D array is really an array of arrays. You can think of it as an array

of rows, where each row is an array. Figure 16.3 shows what it looks like.

1 20

1 20

1 20

1 20

array

row 0

row 1

row 2

row 3

Figure 16.3: Storing rows and columns with a 2D array.

When we write array[r][c], Java uses the first index to select a row and the

second index to select an element from the row. This way of representing 2D

data is known as row-major order.

274 Chapter 16 Arrays of Arrays

16.4 The GridCanvas Class

Now that we have a Cell class and a way to represent a 2D array of cells, we

can write a class to represent a grid of cells. We encapsulate the code from

the previous section and generalize it to construct a grid with any number of

rows and columns:

public class GridCanvas extends Canvas {

private Cell[][] array;

public GridCanvas(int rows, int cols, int size) {

array = new Cell[rows][cols];

for (int r = 0; r < rows; r++) {

int y = r * size;

for (int c = 0; c < cols; c++) {

int x = c * size;

array[r][c] = new Cell(x, y, size);

}

}

// set the canvas size

setSize(cols * size, rows * size);

}

}

Using vocabulary from the previous chapter, GridCanvas “is a” Canvas that

“has a” 2D array of cells. By extending the Canvas class from java.awt, we

inherit methods for drawing graphics on the screen.

In fact, the code is surprisingly straightforward: to draw the grid, we simply

draw each cell. We use nested for loops to traverse the 2D array:

public void draw(Graphics g) {

for (Cell[] row : array) {

for (Cell cell : row) {

cell.draw(g);

}

}

}

16.5 Other Grid Methods 275

The outer loop traverses the rows; the inner loop traverses the cells in each

row. You can almost read this method in English: “For each row in the array,

and for each cell in the row, draw the cell in the graphics context.” Each

cell contains its coordinates and size, so it knows how to draw itself.

Classes that extend Canvas are supposed to provide a method called paint

that “paints” the contents of the Canvas. It gets invoked when the Canvas is

created and anytime it needs to be redrawn; for example, when its window is

moved or resized.

Here’s the paint method for GridCanvas. When the window management

system calls paint, paint calls draw, which draws the cells:

public void paint(Graphics g) {

draw(g);

}

16.5 Other Grid Methods

In addition to draw and paint, the GridCanvas class provides methods for

working with the grid itself. numRows and numCols return the number of rows

and columns. We can get this information from the 2D array, using length:

public int numRows() {

return array.length;

}

public int numCols() {

return array[0].length;

}

Because we are using row-major order, the 2D array is an array of rows.

numRows simply returns the length of the rows array. numCols returns the

length of the first row, which is the number of columns. Since the rows all

have the same length, we have to check only one.

GridCanvas also provides a method that gets the Cell at a given location,

and for convenience when starting the game, a method that turns on the Cell

at a given location.

276 Chapter 16 Arrays of Arrays

public Cell getCell(int r, int c) {

return array[r][c];

}

public void turnOn(int r, int c) {

array[r][c].turnOn();

}

16.6 Starting the Game

Now we’re ready to implement the game. To encapsulate the rules of GoL,

we define a class named Conway. The Conway class “has a” GridCanvas that

represents the state of the game.

This constructor makes a GridCanvas with 5 rows and 10 columns, with cells

that are 20 pixels wide and high. It then sets up the initial conditions:

public class Conway {

private GridCanvas grid;

public Conway() {

grid = new GridCanvas(5, 10, 20);

grid.turnOn(2, 1);

grid.turnOn(2, 2);

grid.turnOn(2, 3);

grid.turnOn(1, 7);

grid.turnOn(2, 7);

grid.turnOn(3, 7);

}

}

Before we implement the rest of the game, we’ll write a main method that

creates a Conway object and displays it. We can use this method to test Cell

and GridCanvas, and to develop the other methods we need:

16.7 The Simulation Loop 277

public static void main(String[] args) {

String title = "Conway's Game of Life";

Conway game = new Conway();

JFrame frame = new JFrame(title);

frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

frame.setResizable(false);

frame.add(game.grid);

frame.pack();

frame.setVisible(true);

game.mainloop();

}

After constructing the game object, main constructs a JFrame, which creates

a window on the screen. The JFrame is configured1 to exit the program when

closed. Resizing the window is disabled.

main then adds the GridCanvas inside the frame, resizes (“packs”) the frame

to fit the canvas, and makes the frame visible. Figure 16.4 shows the result.

Figure 16.4: Screenshot of the initial Conway application.

16.7 The Simulation Loop

At the end of main, we call mainloop, which uses a while loop to simulate

the time steps of the Game of Life. Here’s a rough draft of this method:

1We are using JFrame (in javax.swing) instead of Frame (in java.awt) for simplicity.
Frame does not provide a default close operation; it requires you to implement a method to
be called when the user closes the window.

278 Chapter 16 Arrays of Arrays

private void mainloop() {

while (true) {

this.update();

grid.repaint();

Thread.sleep(500); // compiler error

}

}

During each time step, we update the state of the game and repaint the grid.

We will present the update method in Section 16.10.

repaint comes from the Canvas class. By default, it calls the paint method

we provided, which calls draw. The reason we use it here is that repaint does

not require a Graphics object as a parameter.

Thread.sleep(500) causes the program to “sleep” for 500 milliseconds, or a

half second. Otherwise, the program would run so fast we would not be able

to see the animation.

There’s just one problem: compiling this code results in the error “unreported

exception InterruptedException”. This message means we need to do some

exception handling.

16.8 Exception Handling

So far, the only exceptions you have seen are run-time errors like “array index

out of bounds” and “null pointer”. When one of these exceptions occurs, Java

displays a message and ends the program.

If you don’t want the program to end, you can handle exceptions with a try-

catch statement. The syntax is similar to an if-else statement, and the logic

is, too. Here’s what it looks like:

try {

Thread.sleep(500);

} catch (InterruptedException e) {

// do nothing

}

16.9 Counting Neighbors 279

First, Java runs the code in the try block, which calls Thread.sleep in this

example. If an InterruptedException occurs during the try block, Java

executes the catch block. In this example, the catch block contains a comment,

so it doesn’t do anything.

If a different exception occurs during the try block, Java does whatever it would

do otherwise, which is probably to display a message and end the program. If

no exceptions occur during the try block, the catch block doesn’t run and the

program continues.

In this example, the effect of the try-catch statement is to ignore an “interrupted”

exception if it occurs. As an alternative, we could use the catch block to display

a customized message, end the program, or handle the exception in whatever

way is appropriate. For example, if user input causes an exception, we could

catch the exception and prompt the user to try again later.

There’s more to learn about exception handling. You can read about exceptions

in the Java tutorials (see https://thinkjava.org/exceptions).

16.9 Counting Neighbors

Now that you know about try and catch, we can use them to implement a

useful method in GridCanvas. Part of the GoL logic is to count the number

of live neighbors. Most cells have eight neighbors, as shown in Figure 16.5.

However, cells on the edges and in the corners have fewer neighbors. If we try

to count all possible neighbors, we’ll go out of bounds. The following method

uses a try-catch statement to deal with these special cases:

public int test(int r, int c) {

try {

if (array[r][c].isOn()) {

return 1;

}

} catch (ArrayIndexOutOfBoundsException e) {

// cell doesn't exist

}

return 0;

}

https://thinkjava.org/exceptions

280 Chapter 16 Arrays of Arrays

Figure 16.5: Cells in the interior of the grid have eight neighbors. Cells in the
corners and along the edges have fewer neighbors.

The test method takes a row index, r, and a column index, c. It tries to look

up the Cell at that location. If both indexes are in bounds, the Cell exists.

In that case, test returns 1 if the Cell is on. Otherwise, it skips the catch

block and returns 0.

If either index is out of bounds, the array lookup throws an exception, but the

catch block ignores it. Then test resumes and returns 0. So the non-existent

cells around the perimeter are considered to be off.

Now we can use test to implement countAlive, which takes a grid location,

(r, c), and returns the number of live neighbors surrounding that location:

private int countAlive(int r, int c) {

int count = 0;

count += grid.test(r - 1, c - 1);

count += grid.test(r - 1, c);

count += grid.test(r - 1, c + 1);

count += grid.test(r, c - 1);

count += grid.test(r, c + 1);

count += grid.test(r + 1, c - 1);

count += grid.test(r + 1, c);

count += grid.test(r + 1, c + 1);

return count;

}

Because test handles “out of bounds” exceptions, countAlive works for any

values of r and c.

16.10 Updating the Grid 281

16.10 Updating the Grid

Now we are ready to write update, which gets invoked each time through the

simulation loop. It uses the GoL rules to compute the state of the grid after

the next time step:

public void update() {

int[][] counts = countNeighbors();

updateGrid(counts);

}

The rules of GoL specify that you have to update the cells “simultaneously”;

that is, you have to count the neighbors for all cells before you can update any

of them.

We do that by traversing the grid twice: first, countNeighbors counts the live

neighbors for each cell and puts the results in an array named counts; second,

updateGrid updates the cells. Here’s countNeighbors:

private int[][] countNeighbors() {

int rows = grid.numRows();

int cols = grid.numCols();

int[][] counts = new int[rows][cols];

for (int r = 0; r < rows; r++) {

for (int c = 0; c < cols; c++) {

counts[r][c] = countAlive(r, c);

}

}

return counts;

}

countNeighbors traverses the cells in the grid and uses countAlive from the

previous section to count the neighbors. The return value is a 2D array of

integers with the same size as grid. Figure 16.6 illustrates an example.

In contrast to the drawmethod of GridCanvas, which uses enhanced for loops,

countNeighbors uses standard for loops. The reason is that, in this example,

we need the indexes r and c to store the neighbor counts.

282 Chapter 16 Arrays of Arrays

Figure 16.6: The result of countNeighbors for the grid in Section 16.6.

updateGrid uses getCell to select each Cell in the grid, and updateCell to

do the update:

private void updateGrid(int[][] counts) {

int rows = grid.numRows();

int cols = grid.numCols();

for (int r = 0; r < rows; r++) {

for (int c = 0; c < cols; c++) {

Cell cell = grid.getCell(r, c);

updateCell(cell, counts[r][c]);

}

}

}

updateCell implements the GoL rules: if the cell is alive, it dies if it has fewer

than two or more than three neighbors; if the cell is dead, it comes to life if it

has exactly three:

private static void updateCell(Cell cell, int count) {

if (cell.isOn()) {

if (count < 2 || count > 3) {

cell.turnOff();

}

} else {

if (count == 3) {

cell.turnOn();

}

}

}

Notice that updateGrid and updateCell are both private, because they are

16.11 Vocabulary 283

helper methods not intended to be invoked from outside the class. updateCell

is also static, because it does not depend on grid.

Now our implementation of the Game of Life is complete. We think it’s is

pretty fun, and we hope you agree. But more importantly, this example is

meant to demonstrate the use of 2D arrays and an object-oriented design

that’s a little more substantial than in previous chapters.

16.11 Vocabulary

multidimensional array: An array with more than one dimension; a 2D

array is an “array of arrays”.

row-major order: Storing data in a 2D array, first by rows and then by

columns.

16.12 Exercises

The code for this chapter is in the ch15 directory of ThinkJavaCode2. See

page xviii for instructions on how to download the repository. Before you

start the exercises, we recommend that you compile and run the examples.

Exercise 16.1 In GridCanvas, write a method named countOn that returns

the total number of cells that are “on”. This method can be used, for example,

to track the population in Game of Life over time.

Exercise 16.2 In our version of the Game of Life, the grid has a finite size.

As a result, moving objects such as Gliders either crash into the wall or go out

of bounds.

An interesting variation of the Game of Life is a “toroidal” grid, meaning that

the cells “wrap around” on the edges. Modify the test method of GridCanvas

so that the coordinates r and c map to the opposite side of the grid if they

are too low or two high.

Run your code with a Glider (see Figure 16.1) to see if it works. You can

initialize the Glider by modifying the constructor in the Conway class, or by

reading it from a file (see the next exercise).

284 Chapter 16 Arrays of Arrays

Exercise 16.3 The LifeWiki site (https://conwaylife.com/wiki/) has a

fascinating collection of patterns for the Game of Life. These patterns are

stored in a file format that is easy to read, in files with the suffix “.cells”.

For example, here is an 8 x 10 grid with a Glider near the upper-left corner:

!Name: Glider

..........

..O.......

...O......

.OOO......

..........

..........

..........

..........

Lines that begin with ! are comments and should be ignored. The rest of

the file describes the grid, row by row. A period represents a dead cell, and

an uppercase O represents a live cell. See https://conwaylife.com/wiki/

Plaintext for more examples.

1. Create a plain text file with the contents shown above, and save the file

as glider.cells in the same directory as your code.

2. Define a constructor for the Conway class that takes a string representing

the name (or path) of a “.cells” file. Here is a starting point:

public Conway(String path) {

File file = new File(path);

Scanner scan = new Scanner(file);

}

3. Modify the main method to invoke the constructor as follows:

Conway game = new Conway("glider.cells");

4. Handle the FileNotFoundException that may be thrown when creating

a Scanner for a File by invoking printStackTrace on the exception

object and calling System.exit() with a status of 1, indicating an error.

5. Continue implementing the constructor by reading all non-comment lines

into an ArrayList via hasNextLine and nextLine of the Scanner.

https://conwaylife.com/wiki/
https://conwaylife.com/wiki/Plaintext
https://conwaylife.com/wiki/Plaintext

16.12 Exercises 285

6. Determine the number of rows and columns of the grid by examining the

ArrayList contents.

7. Create and initialize a GridCanvas based on the ArrayList.

Once your constructor is working, you will be able to run many of the patterns

on the LifeWiki. You might want to add a margin of empty cells around the

initial pattern, to give it room to grow.

Exercise 16.4 Some files on the LifeWiki use “run-length encoding” (RLE)

instead of plain text. The basic idea of RLE is to describe the number of dead

and alive cells, rather than type out each individual cell.

For example, glider.cells from the previous exercise could be represented this

way with RLE:

#C Name: Glider

x = 10, y = 8

$2bo$3bo$b3o!

The first line specifies x (the number of columns) and y (the number of rows).

Subsequent lines consist of the letters b (dead), o (alive), and $ (end of line),

optionally preceded by a count. The pattern ends with !, after which any

remaining file contents are ignored.

Lines beginning with # have special meaning and are not part of the pattern.

For example, #C is a comment line. You can read more about RLE format on

https://conwaylife.com/wiki/RLE.

1. Create a plain text file with the preceding contents, and save the file as

glider.rle in the same directory as your code.

2. Modify your constructor from the previous exercise to check the last

three characters of the path. If they are "rle", then you will need to

process the file as RLE. Otherwise, assume the file is in “.cells” format.

3. In the end, your constructor should be able to read and initialize grids

in both formats. Test your constructor by modifying the main method

to read different files.

https://conwaylife.com/wiki/RLE

286 Chapter 16 Arrays of Arrays

Chapter 17

Reusing Classes

In Chapter 16, we developed classes to implement Conway’s Game of Life. We

can reuse the Cell and GridCanvas classes to implement other simulations.

One of the most interesting zero-player games is Langton’s Ant, which models

an “ant” that walks around a grid. The ant follows only two simple rules:

1. If the ant is on a white cell, it turns to the right, makes the cell black,

and moves forward.

2. If the ant is on a black cell, it turns to the left, makes the cell white, and

moves forward.

Because the rules are simple, you might expect the ant to do something simple,

like make a square or repeat a simple pattern. But starting on a grid with

all white cells, the ant makes more than 10,000 steps in a seemingly random

pattern before it settles into a repeating loop of 104 steps. You can read more

about it at https://en.wikipedia.org/wiki/Langton’s_ant.

In this chapter, we present an implementation of Langton’s Ant and use it to

demonstrate more advanced object-oriented techniques.

17.1 Langton’s Ant

We begin by defining a Langton class that has a grid and information about

the ant. The constructor takes the grid dimensions as parameters:

https://en.wikipedia.org/wiki/Langton's_ant

288 Chapter 17 Reusing Classes

public class Langton {

private GridCanvas grid;

private int xpos;

private int ypos;

private int head; // 0=North, 1=East, 2=South, 3=West

public Langton(int rows, int cols) {

grid = new GridCanvas(rows, cols, 10);

xpos = rows / 2;

ypos = cols / 2;

head = 0;

}

}

grid is a GridCanvas object, which represents the state of the cells. xpos and

ypos are the coordinates of the ant, and head is the “heading” of the ant; that

is, which direction it is facing. head is an integer with four possible values,

where 0 means the ant is facing “north” (i.e., toward the top of the screen), 1

means “east”, etc.

Here’s an update method that implements the rules for Langton’s Ant:

public void update() {

flipCell();

moveAnt();

}

The flipCell method gets the Cell at the ant’s location, figures out which

way to turn, and changes the state of the cell:

private void flipCell() {

Cell cell = grid.getCell(xpos, ypos);

if (cell.isOff()) {

head = (head + 1) % 4; // turn right

cell.turnOn();

} else {

head = (head + 3) % 4; // turn left

cell.turnOff();

}

}

17.1 Langton’s Ant 289

We use the remainder operator, %, to make head wrap around: if head is 3

and we turn right, it wraps around to 0; if head is 0 and we turn left, it wraps

around to 3.

Notice that to turn right, we add 1 to head. To turn left, we could subtract 1,

but -1 % 4 is -1 in Java. So we add 3 instead, since one left turn is the same

as three right turns.

The moveAntmethod moves the ant forward one square, using head to determine

which way is forward:

private void moveAnt() {

if (head == 0) {

ypos -= 1;

} else if (head == 1) {

xpos += 1;

} else if (head == 2) {

ypos += 1;

} else {

xpos -= 1;

}

}

Here is the main method we use to create and display the Langton object:

public static void main(String[] args) {

String title = "Langton's Ant";

Langton game = new Langton(61, 61);

JFrame frame = new JFrame(title);

frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

frame.setResizable(false);

frame.add(game.grid);

frame.pack();

frame.setVisible(true);

game.mainloop();

}

Most of this code is the same as the main we used to create and run Conway,

in Section 16.6. It creates and configures a JFrame and runs mainloop.

290 Chapter 17 Reusing Classes

And that’s everything! If you run this code with a grid size of 61 x 61 or

larger, you will see the ant eventually settle into a repeating pattern.

Because we designed Cell and GridCanvas to be reusable, we didn’t have to

modify them at all. However, we now have two copies of main and mainloop—

one in Conway, and one in Langton.

17.2 Refactoring

Whenever you see repeated code like main, you should think about ways to

remove it. In Chapter 15, we used inheritance to eliminate repeated code.

We’ll do something similar with Conway and Langton.

First, we define a superclass named Automaton, in which we will put the code

that Conway and Langton have in common:

public class Automaton {

private GridCanvas grid;

public void run(String title, int rate) {

JFrame frame = new JFrame(title);

frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

frame.setResizable(false);

frame.add(this.grid);

frame.pack();

frame.setVisible(true);

this.mainloop(rate);

}

}

Automaton declares grid as an instance variable, so every Automaton “has a”

GridCanvas. It also provides run, which contains the code that creates and

configures the JFrame.

The run method takes two parameters: the window title and the frame

rate; that is, the number of time steps to show per second. It uses title

when creating the JFrame, and it passes rate to mainloop:

17.3 Abstract Classes 291

private void mainloop(int rate) {

while (true) {

// update the drawing

this.update();

grid.repaint();

// delay the simulation

try {

Thread.sleep(1000 / rate);

} catch (InterruptedException e) {

// do nothing

}

}

}

mainloop contains the code you first saw in Section 16.7. It runs a while

loop forever (or until the window closes). Each time through the loop, it runs

update to update grid and then repaint to redraw the grid.

Then it calls Thread.sleep with a delay that depends on rate. For example,

if rate is 2, we should draw two frames per second, so the delay is a half

second, or 500 milliseconds.

This process of reorganizing existing code, without changing its behavior, is

known as refactoring. We’re almost finished; we just need to redesign Conway

and Langton to extend Automaton.

17.3 Abstract Classes

If we were not planning to implement any other zero-person games, we could

leave well enough alone. But there are a few problems with the current design:

� The grid attribute is private, making it inaccessible in Conway and

Langton. We could make it public, but then other (unrelated) classes

would have access to it as well.

� The Automaton class has no constructors, and even if it did, there would

be no reason to create an instance of this class.

292 Chapter 17 Reusing Classes

� The Automaton class does not provide an implementation of update. In

order to work properly, subclasses need to provide one.

Java provides language features to solve these problems:

� We can make the grid attribute protected, which means it’s accessible

to subclasses but not other classes.

� We can make the class abstract, which means it cannot be instantiated.

If you attempt to create an object for an abstract class, you will get a

compiler error.

� We can declare update as an abstract method, meaning that it must

be overridden in subclasses. If the subclass does not override an abstract

method, you will get a compiler error.

Here’s what Automaton looks like as an abstract class (using the methods

mainloop and run from Section 17.2):

public abstract class Automaton {

protected GridCanvas grid;

public abstract void update();

private void mainloop(int rate) {

// this method invokes update

}

public void run(String title, int rate) {

// this method invokes mainloop

}

}

Notice that the update method has no body. The declaration specifies the

name, arguments, and return type. But it does not provide an implementation,

because it is an abstract method.

Notice also the word abstract on the first line, which declares that Automaton

is an abstract class. In order to have any abstract methods, a class must be

declared as abstract.

17.4 UML Diagram 293

Any class that extends Automaton must provide an implementation of update;

the declaration here allows the compiler to check.

Here’s what Conway looks like as a subclass of Automaton:

public class Conway extends Automaton {

// same methods as before, except mainloop is removed

public static void main(String[] args) {

String title = "Conway's Game of Life";

Conway game = new Conway();

game.run(title, 2);

}

}

Conway extends Automaton, so it inherits the protected instance variable

grid and the methods mainloop and run. But because Automaton is abstract,

Conway has to provide update and a constructor (which it has already).

Abstract classes are essentially “incomplete” class definitions that specify

methods to be implemented by subclasses. But they also provide attributes

and methods to be inherited, thus eliminating repeated code.

17.4 UML Diagram

At the beginning of the chapter, we had three classes: Cell, GridCanvas,

and Conway. We then developed Langton, which had almost the same main

and mainloop methods as Conway. So we refactored the code and created

Automaton. Figure 17.1 summarizes the final design.

The diagram shows three examples of inheritance: Conway is an Automaton,

Langton is an Automaton, and GridCanvas is a Canvas. It also shows two

examples of composition: Automaton has a GridCanvas, and GridCanvas has

a 2D array of Cells.

The diagram also shows that Automaton uses JFrame, GridCanvas uses Graphics,

and Cell uses Graphics and Color.

294 Chapter 17 Reusing Classes

Figure 17.1: UML class diagram of Conway and Langton applications.

Automaton is in italics to indicate that it is an abstract class. As it happens,

Graphics is an abstract class, too.

Conway and Langton are concrete classes, because they provide an implementation

for all of their methods. In particular, they implement the updatemethod that

was declared abstract in Automaton.

One of the challenges of object-oriented programming is keeping track of a large

number of classes and the relationships between them. UML class diagrams

can help.

17.5 Vocabulary

refactor: To restructure or reorganize existing source code without changing

its behavior.

abstract class: A class that is declared as abstract; it cannot be instantiated,

and it may (or may not) include abstract methods.

concrete class: A class that is not declared as abstract; each of its methods

must have an implementation.

17.6 Exercises 295

17.6 Exercises

The code for this chapter is in the ch16 directory of ThinkJavaCode2. See

page xviii for instructions on how to download the repository. Before you

start the exercises, we recommend that you compile and run the examples.

Exercise 17.1 The last section of this chapter introduced Automaton as an

abstract class and rewrote Conway as a subclass of Automaton. Now it’s your

turn: rewrite Langton as a subclass of Automaton, removing the code that’s

no longer needed.

Exercise 17.2 Mathematically speaking, Game of Life and Langton’s Ant

are cellular automata. “Cellular” means it has cells, and “automaton” means

it runs itself. See https://en.wikipedia.org/wiki/Cellular_automaton

for more discussion.

Implement another cellular automaton of your choice. You may have to modify

Cell and/or GridCanvas, in addition to extending Automaton. For example,

Brian’s Brain (https://en.wikipedia.org/wiki/Brian’s_Brain) requires

three states: “on”, “dying”, and “off”.

https://en.wikipedia.org/wiki/Cellular_automaton
https://en.wikipedia.org/wiki/Brian's_Brain

296 Chapter 17 Reusing Classes

Chapter 18

Advanced Topics

When we first looked at inheritance in Chapter 15, our purpose was to avoid

duplicating code. We noticed that “decks of cards” and “hands of cards” had

common functionality, and we designed a CardCollection class to provide it.

This technique is an example of generalization. By generalizing the code,

we were able to reuse it in the Deck and Hand classes.

In Chapter 16, we looked at inheritance from a different point of view. When

designing GridCanvas to represent a grid of cells, we extended Canvas and

overrode its paint method. This design is an example of specialization.

Using the code provided by Canvas, we created a specialized subclass with

minimal additional code.

We didn’t write the code for Canvas; it’s part of the Java library. But we

were able to customize it for our own purposes. In fact, the Canvas class was

explicitly designed to be extended.

In this chapter, we’ll explore the concept of inheritance more fully and present

event-driven programming. We’ll continue to develop graphical simulations as

a running example, but this time in varying shapes and colors!

18.1 Polygon Objects

The word polygon means “many angles”; the most basic polygons are triangles

(three angles), rectangles (four angles), pentagons (five angles), and so forth.

298 Chapter 18 Advanced Topics

Polygons are an important part of computer graphics because they are used

to compose more complex images.

Java provides a Polygon class (in java.awt) that we can use to represent and

draw polygons. The following code creates an empty Polygon and adds three

points, forming a triangle:

Polygon p = new Polygon();

p.addPoint(57, 110);

p.addPoint(100, 35);

p.addPoint(143, 110);

Internally, Polygon objects have three attributes:

� public int npoints; // total number of points

� public int[] xpoints; // array of X coordinates

� public int[] ypoints; // array of Y coordinates

When a Polygon is created, npoints is 0 and the two arrays are initialized

with length 4. As points are added, npoints is incremented. If npoints

exceeds the length of the arrays, larger arrays are created, and the previous

values are copied over (similar to how ArrayList works).

The Polygon class provides many useful methods, like contains, intersects,

and translate. We’ll get to those later, but first we’re going to do some

specialization.

18.2 Adding Color

Specialization is useful for adding new features to an existing class, especially

when you can’t (or don’t want to) change its design. For example, we can

extend the Polygon class by adding a draw method and a Color attribute:

18.3 Regular Polygons 299

public class DrawablePolygon extends Polygon {

protected Color color;

public DrawablePolygon() {

super();

color = Color.GRAY;

}

public void draw(Graphics g) {

g.setColor(color);

g.fillPolygon(this);

}

}

As a reminder, constructors are not inherited when you extend a class. If you

don’t define a constructor, the compiler will generate one that does nothing.

The constructor for DrawablePolygon uses super to invoke the constructor

for Polygon, which initializes the attributes npoints, xpoints, and ypoints.

Then DrawablePolygon initializes the color attribute to GRAY.

DrawablePolygon has the same attributes and methods that Polygon has, so

you can use addPoint as before, or you can directly access npoints, xpoints,

and ypoints (since they are public). You can also use methods like contains,

intersects, and translate.

The following code creates a DrawablePolygon with the same points as in the

previous section and sets its color to GREEN:

DrawablePolygon p = new DrawablePolygon();

p.addPoint(57, 110);

p.addPoint(100, 35);

p.addPoint(143, 110);

p.color = Color.GREEN;

18.3 Regular Polygons

In mathematics, a regular polygon has all sides the same length and all angles

equal in measure. Regular polygons are a special case of polygons, so we will

use specialization to define a class for them.

300 Chapter 18 Advanced Topics

We could extend the Polygon class, as we did in the previous section. But

then we would not have the Color functionality we just added. So we will

make RegularPolygon extend DrawablePolygon.

To construct a RegularPolygon, we specify the number of sides, the radius

(distance from the center to a vertex), and the color. For example:

RegularPolygon rp = new RegularPolygon(6, 50, Color.BLUE);

Figure 18.1: Determining the x and y coordinates of vertex V1, given the
radius r and angle θ. The center of the polygon is at the origin (0, 0).

The constructor uses trigonometry to find the coordinates of each vertex.

Figure 18.1 illustrates the process. The number of sides (n = 6) and the

radius (r = 50) are given as parameters.

� Imagine a clock hand starting at V0 and rotating counterclockwise to

V1, V2, and so forth. In Figure 18.1, the hand is currently at V1.

� The angle θ is 2π/n, since there are 2π radians in a circle. In other words,

we are dividing the rotation of the clock hand into n equal angles.

� By definition, cos(θ) = x/r and sin(θ) = y/r. Therefore, x = r cos(θ)

and y = r sin(θ).

� We can determine the other (x, y) coordinates by multiplying θ by i,

where i is the vertex number.

Here is the constructor for RegularPolygon:

18.3 Regular Polygons 301

public RegularPolygon(int nsides, int radius, Color color) {

// initialize DrawablePolygon attributes

this.npoints = nsides;

this.xpoints = new int[nsides];

this.ypoints = new int[nsides];

this.color = color;

// the amount to rotate for each vertex (in radians)

double theta = 2.0 * Math.PI / nsides;

// compute x and y coordinates, centered at the origin

for (int i = 0; i < nsides; i++) {

double x = radius * Math.cos(i * theta);

double y = radius * Math.sin(i * theta);

xpoints[i] = (int) Math.round(x);

ypoints[i] = (int) Math.round(y);

}

}

This constructor initializes all four DrawablePolygon attributes, so it doesn’t

have to invoke super().

It initializes xpoints and ypoints by creating arrays of integer coordinates.

Inside the for loop, it uses Math.sin and Math.cos (see Section 4.6) to

compute the coordinates of the vertices as floating-point numbers. Then it

rounds them off to integers and stores them in the arrays.

When we construct a RegularPolygon, the vertices are centered at the point

(0, 0). If we want the center of the polygon to be somewhere else, we can use

translate, which we inherit from Polygon:

RegularPolygon rp = new RegularPolygon(6, 50, Color.BLUE);

rp.translate(100, 100);

The result is a six-sided polygon with radius 50 centered at the point (100, 100).

302 Chapter 18 Advanced Topics

18.4 More Constructors

Classes in the Java library often have more than one constructor for convenience.

We can do the same with RegularPolygon. For example, we can make the

color parameter optional by defining a second constructor:

public RegularPolygon(int nsides, int radius) {

this(nsides, radius, Color.GRAY);

}

The keyword this, when used in a constructor, invokes another constructor

in the same class. It has a similar syntax as the keyword super, which invokes

a constructor in the superclass.

Similarly, we could make the radius parameter optional too:

public RegularPolygon(int nsides) {

this(nsides, 50);

}

Now, suppose we invoke the RegularPolygon constructor like this:

RegularPolygon rp = new RegularPolygon(6);

Because we provide only one integer argument, Java calls the third constructor,

which calls the second one, which calls the first one. The result is a RegularPolygon

with the specified value of nsides, 6, the default value of radius, 50, and the

default color, GRAY.

When writing constructors, it’s a good idea to validate the values you get as

arguments. Doing so prevents run-time errors later in the program, which

makes the code easier to debug.

For RegularPolygon, the number of sides should be at least three, the radius

should be greater than zero, and the color should not be null. We can add

the following lines to the first constructor:

18.5 An Initial Drawing 303

public RegularPolygon(int nsides, int radius, Color color) {

// validate the arguments

if (nsides < 3) {

throw new IllegalArgumentException("invalid nsides");

}

if (radius <= 0) {

throw new IllegalArgumentException("invalid radius");

}

if (color == null) {

throw new NullPointerException("invalid color");

}

// the rest of the method is omitted

In this example, we throw an exception to indicate that one of the arguments

is invalid. By default, these exceptions terminate the program and display an

error message along with the stack trace.

Because we added this code to the most general constructor, we don’t have to

add it to the others.

18.5 An Initial Drawing

Now that we have DrawablePolygon and RegularPolygon, let’s take them for

a test drive. We’ll need a Canvas for drawing them, so we define a new class,

Drawing, that extends Canvas:

public class Drawing extends Canvas {

private ArrayList<DrawablePolygon> list;

public Drawing(int width, int height) {

setSize(width, height);

setBackground(Color.WHITE);

list = new ArrayList<DrawablePolygon>();

}

304 Chapter 18 Advanced Topics

public void add(DrawablePolygon dp) {

list.add(dp);

}

public void paint(Graphics g) {

for (DrawablePolygon dp : list) {

dp.draw(g);

}

}

}

The Drawing class has an ArrayList of DrawablePolygon objects. When we

create a Drawing object, the list is initially empty. The add method takes a

DrawablePolygon and adds it to the list.

Drawing overrides the paintmethod that it inherits from Canvas. paint loops

through the list of DrawablePolygon objects and invokes draw on each one.

Here is an example that creates three RegularPolygon objects and draws

them. Figure 18.2 shows the result.

public static void main(String[] args) {

// create some regular polygons

DrawablePolygon p1 = new RegularPolygon(3, 50, Color.GREEN);

DrawablePolygon p2 = new RegularPolygon(6, 50, Color.ORANGE);

DrawablePolygon p3 = new RegularPolygon(360, 50, Color.BLUE);

// move them out of the corner

p1.translate(100, 80);

p2.translate(250, 120);

p3.translate(400, 160);

// create drawing, add polygons

Drawing drawing = new Drawing(500, 250);

drawing.add(p1);

drawing.add(p2);

drawing.add(p3);

18.5 An Initial Drawing 305

// set up the window frame

JFrame frame = new JFrame("Drawing");

frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

frame.add(drawing);

frame.pack();

frame.setVisible(true);

}

Figure 18.2: Initial drawing of three RegularPolygon objects.

The first block of code creates RegularPolygon objects with 3, 6, and 360

sides. As you can see, a polygon with 360 sides is a pretty good approximation

of a circle.

The second block of code translates the polygons to different locations. The

third block of code creates the Drawing and adds the polygons to it. And the

fourth block of code creates a JFrame, adds the Drawing to it, and displays

the result.

Most of these pieces should be familiar, but one part of this program might

surprise you. When we create the RegularPolygon objects, we assign them

to DrawablePolygon variables. It might not be obvious why that’s legal.

RegularPolygon extends DrawablePolygon, so every RegularPolygon object

is also a DrawablePolygon. The parameter of Drawing.add has to be a

DrawablePolygon, but it can be any type of DrawablePolygon, including

RegularPolygon and other subclasses.

306 Chapter 18 Advanced Topics

This design is an example of polymorphism, a fancy word that means “having

many forms”. Drawing.add is a polymorphic method, because the parameter

can be one of many types. And the ArrayList in Drawing is a polymorphic

data structure, because the elements can be different types.

18.6 Blinking Polygons

At this point, we have a simple program that draws polygons; we can make it

more fun by adding animation. Chapter 16 introduced the idea of simulating

time steps. Here’s a loop that runs the animation:

while (true) {

drawing.step();

try {

Thread.sleep(1000 / 30);

} catch (InterruptedException e) {

// do nothing

}

}

Each time through the loop, we call step to update the Drawing. Then we

sleep with a delay calculated to update about 30 times per second.

Here’s what the step method of Drawing looks like:

public void step() {

for (DrawablePolygon dp : list) {

dp.step();

}

repaint();

}

It invokes step on each DrawablePolygon in the list and then repaints (clears

and redraws) the canvas.

In order for this code to compile, we need DrawablePolygon to provide a

step method. Here’s a version that doesn’t do anything; we’ll override it in

subclasses:

18.6 Blinking Polygons 307

public void step() {

// do nothing

}

Now let’s design a new type of polygon that blinks. We’ll define a class

named BlinkingPolygon that extends RegularPolygon and adds two more

attributes: visible, which indicates whether the polygon is visible, and

count, which counts the number of time steps since the last blink:

public class BlinkingPolygon extends RegularPolygon {

protected boolean visible;

protected int count;

public BlinkingPolygon(int nsides, int radius, Color c) {

super(nsides, radius, c);

visible = true;

count = 0;

}

public void draw(Graphics g) {

if (visible) {

super.draw(g);

}

}

public void step() {

count++;

if (count == 10) {

visible = !visible;

count = 0;

}

}

}

The constructor uses super to call the RegularPolygon constructor. Then it

initializes visible and count. Initially, the BlinkingPolygon is visible.

The draw method draws the polygon only if it is visible. It uses super to

call draw in the parent class. But the parent class is RegularPolygon, which

308 Chapter 18 Advanced Topics

does not provide a draw method. In this case, super invokes draw from the

DrawablePolygon class.

The step method increments count. Every 10 time steps, it toggles visible

and resets count to 0.

18.7 Interfaces

You might be getting tired of polygons at this point. Can’t we draw anything

else? Of course we can, but Drawing is currently based on DrawablePolygon.

To draw other types of objects, we have to generalize the code.

The Drawing class does essentially three things: (1) it maintains a list of

objects, (2) it invokes the draw method on each object, and (3) it invokes the

step method on each object.

So here’s one way we could make the code more general:

1. Define a new superclass, which we call Actor, that provides the two

methods needed by Drawing:

public class Actor {

public void draw(Graphics g) {

// do nothing

}

public void step() {

// do nothing

}

}

2. In the Drawing class, replace DrawablePolygon with Actor.

3. Any class that we want to draw must now extend Actor.

There’s just one problem: DrawablePolygon already extends Polygon, and

classes can extend only one superclass. Also, the Actor class seems pointless,

since the methods it defines don’t do anything.

Java provides another mechanism for inheritance that solves these problems.

We can define Actor as an interface instead of a class, like this:

18.7 Interfaces 309

public interface Actor {

void draw(Graphics g);

void step();

}

Like a class definition, an interface definition contains methods. But it

contains only the declarations of the methods, not their implementations.

Like an abstract class, an interface specifies methods that must be provided

by subclasses. The difference is that an abstract class can implement some

methods; an interface cannot.

All interface methods are public by default, since they are intended to be

used by other classes. So there is no need to declare them as public.

To inherit from an interface, you use the keyword implements instead of

extends. Here’s a version of DrawablePolygon that extends Polygon and

implements Actor. So it inherits methods from Polygon, and it is required to

provide the methods in Actor; namely draw and step:

public class DrawablePolygon extends Polygon implements Actor {

// rest of the class omitted

}

In terms of inheritance, DrawablePolygon is both a Polygon and an Actor.

So the following assignments are legal:

Polygon p1 = new DrawablePolygon();

Actor a2 = new DrawablePolygon();

And the same is true for subclasses of DrawablePolygon; these assignments

are legal too:

Polygon p2 = new RegularPolygon(5, 50, Color.YELLOW);

Actor a2 = new RegularPolygon(5, 50, Color.YELLOW);

Interfaces are another example of polymorphism. a1 and a2 are the same type

of variable, but they refer to objects with different types. And similarly with

p1 and p2.

Classes may extend only one superclass, but they may implement as many

interfaces as needed. Java library classes often implement multiple interfaces.

310 Chapter 18 Advanced Topics

18.8 Event Listeners

Now that our Drawing is based on Actor instead of DrawablePolygon, we can

draw other types of graphics. Here is the beginning of a class that reads an

image from a file and shows the image moving across the canvas. The class

is called Sprite because a moving image is sometimes called a sprite, in the

context of computer graphics:

public class Sprite implements Actor, KeyListener {

private int xpos;

private int ypos;

private int dx;

private int dy;

private Image image;

public Sprite(String path, int xpos, int ypos) {

this.xpos = xpos;

this.ypos = ypos;

try {

this.image = ImageIO.read(new File(path));

} catch (IOException exc) {

exc.printStackTrace();

}

}

}

The instance variables xpos and ypos represent the location of the sprite. dx

and dy represent the velocity of the sprite in the x and y directions.

The constructor takes as parameters the name of a file and the initial position.

It uses ImageIO, from the javax.imageio package, to read the file. If an error

occurs during reading, an IOException is caught, and the program displays

the stack trace for debugging.

Sprite implements two interfaces: Actor and KeyListener. Actor requires

that we provide draw and step methods:

18.8 Event Listeners 311

public void draw(Graphics g) {

g.drawImage(image, xpos, ypos, null);

}

public void step() {

xpos += dx;

ypos += dy;

}

The draw method draws the image at the sprite’s current position. The step

method changes the position based on dx and dy, which are initially zero.

KeyListener is an interface for receiving keyboard events, which means we

can detect and respond to key presses. A class that implements KeyListener

has to provide the following methods:

void keyPressed(KeyEvent e)

Invoked when a key has been “pressed”. This method is invoked repeatedly

while a key is being held down.

void keyReleased(KeyEvent e)

Invoked when a key has been “released”, meaning it is no longer down.

void keyTyped(KeyEvent e)

Invoked when a key has been “typed”, which generally means it has been

both pressed and released.

These methods get invoked when the user presses and releases any key. They

take a KeyEvent object as a parameter, which specifies which key was pressed,

released, or typed.

We can use these methods to design a simple animation using the arrow keys.

When the user presses up or down, the sprite will move up or down. When

the user presses left or right, the sprite will move left or right.

Here’s an implementation of keyPressed that uses a switch statement to test

which arrow key was pressed and sets dx or dy accordingly. (There is no

default branch, so we ignore all other keys.)

312 Chapter 18 Advanced Topics

public void keyPressed(KeyEvent e) {

switch (e.getKeyCode()) {

case KeyEvent.VK_UP:

dy = -5;

break;

case KeyEvent.VK_DOWN:

dy = +5;

break;

case KeyEvent.VK_LEFT:

dx = -5;

break;

case KeyEvent.VK_RIGHT:

dx = +5;

break;

}

}

The values of dx and dy determine how much the sprite moves each time step

is invoked. While the user holds down an arrow key, the sprite will move at a

constant speed.

Here’s an implementation of keyReleased that runs when the user releases

the key:

public void keyReleased(KeyEvent e) {

switch (e.getKeyCode()) {

case KeyEvent.VK_UP:

case KeyEvent.VK_DOWN:

dy = 0;

break;

case KeyEvent.VK_LEFT:

case KeyEvent.VK_RIGHT:

dx = 0;

break;

}

}

When the user releases the key, keyReleased sets dx or dy to 0, so the sprite

stops moving in that direction.

18.9 Timers 313

We don’t need the keyTyped method for this example, but it’s required by the

interface; if we don’t provide one, the compiler will complain. So we provide

an implementation that does nothing:

public void keyTyped(KeyEvent e) {

// do nothing

}

Now, here’s the code we need to create a Sprite, add it to a Drawing, and

configure it as a KeyListener:

Sprite sprite = new Sprite("face-smile.png", 25, 150);

drawing.add(sprite);

drawing.addKeyListener(sprite);

drawing.setFocusable(true);

Recall that the add method is one that we wrote in Section 18.5. It adds an

Actor to the list of objects to be drawn.

The addKeyListenermethod is inherited from Canvas. It adds a KeyListener

to the list of objects that will receive key events.

In graphical applications, key events are sent to components only when they

have the keyboard focus. The setFocusable method ensures that drawing

will have the focus initially, without the user having to click it first.

18.9 Timers

Now that you know about interfaces and events, we can show you a better

way to create animations. Previously, we implemented the animation loop

by using while (true) and Thread.sleep. Java provides a Timer class (in

javax.swing) that encapsulates this behavior.

A Timer is useful for executing code at regular intervals. The constructor for

Timer takes two parameters:

� int delay // milliseconds between events

� ActionListener listener // for handling timer events

314 Chapter 18 Advanced Topics

The ActionListener interface requires only one method, actionPerformed.

This is the method the Timer invokes after the given delay.

Using a Timer, we can reorganize the code in main by defining a class that

implements ActionListener:

public class VideoGame implements ActionListener {

private Drawing drawing;

public VideoGame() {

Sprite sprite = new Sprite("face-smile.png", 50, 50);

drawing = new Drawing(800, 600);

drawing.add(sprite);

drawing.addKeyListener(sprite);

drawing.setFocusable(true);

JFrame frame = new JFrame("Video Game");

frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

frame.add(drawing);

frame.pack();

frame.setVisible(true);

}

public void actionPerformed(ActionEvent e) {

drawing.step();

}

public static void main(String[] args) {

VideoGame game = new VideoGame();

Timer timer = new Timer(33, game);

timer.start();

}

}

The main method constructs a VideoGame object, which creates a Sprite, a

Drawing, and a JFrame. Then it constructs a Timer object and starts the

timer. Every 33 milliseconds, the Timer invokes actionPerformed, which

invokes step on the Drawing.

Drawing.step invokes step on all of its Actor objects, which causes them

18.10 Vocabulary 315

to update their position, color, or other aspects of their appearance. The

Drawing.step then repaints the Canvas, and the time step is done.

At this point, you have all of the elements you need to write your own video

games. In the exercises at the end of this chapter, we have some suggestions

for getting started.

We hope this final chapter has been a helpful summary of topics presented

throughout the book, including input and output, decisions and loops, classes

and methods, arrays and objects, inheritance, and graphics. Congratulations

on making it to the end!

18.10 Vocabulary

generalization: The process of extracting common code from two or more

classes and moving it into a superclass.

specialization: Extending a class to add new attributes or methods, or to

modify existing behavior.

polymorphism: A language feature that allows objects to be assigned to

variables of related types.

sprite: A computer graphic that may be moved or otherwise manipulated on

the screen.

18.11 Exercises

The code for this chapter is in the ch17 directory of ThinkJavaCode2. See

page xviii for instructions on how to download the repository. Before you

start the exercises, we recommend that you compile and run the examples.

The following exercises give you a chance to practice using the features in this

chapter by extending the example code.

Exercise 18.1 The Polygon class does not provide a toString method; it

inherits the default toString from java.lang.Object, which includes only

the class’s name and memory location. Write a more useful toString method

for DrawablePolygon that includes its (x, y) points.

316 Chapter 18 Advanced Topics

Exercise 18.2 Write a class MovingPolygon that extends RegularPolygon

and implements Actor. It should have instance variables posx and posy that

specify its position, and dx and dy that specify its velocity (and direction).

During each time step, it should update its position. If it gets to the edge of

the Drawing, it should reverse direction by changing the sign of dx or dy.

Exercise 18.3 Modify the VideoGame class so it displays a Sprite and a

MovingPolygon (from the previous exercise). Add code that detects collisions

between Actor objects in the same Drawing, and invoke a method on both

objects when they collide.

Hint: You might want to add a method to the Actor interface, guaranteeing

that all Actor objects know how to handle collisions.

Exercise 18.4 Java provides other event listeners that you can implement to

make your programs interactive. For example, the interfaces MouseListener,

MouseMotionListener, and MouseWheelListener allow you to respond to

mouse input. Use the MouseListener interface to implement an Actor that

can respond to mouse clicks.

Appendix A

Tools

The steps for compiling, running, and debugging Java code depend on your

development environment and operating system. We avoided putting these

details in the main text, because they can be distracting.

Instead, we provide this appendix with a brief introduction to DrJava—an

integrated development environment (IDE) that is helpful for beginners—

and other development tools, including Checkstyle for code quality and JUnit

for testing.

A.1 Installing DrJava

The easiest way to start programming in Java is to use a website that compiles

and runs Java code in the browser. Examples include https://repl.it/,

https://trinket.io/, https://jdoodle.com/, and others.

If you are unable to install software on your computer (which is often the case

in public schools and Internet cafés), you can use these online development

environments for almost everything in this book.

But if you want to compile and run Java programs on your own computer, you

will need the following:

https://repl.it/
https://trinket.io/
https://jdoodle.com/

318 Appendix A Tools

� The Java Development Kit (JDK), which includes the compiler, the

Java Virtual Machine (JVM) that interprets the compiled byte code,

and other tools such as Javadoc.

� A text editor such as Atom, Notepad++, or Sublime Text, and/or an

IDE such as DrJava, Eclipse, jGrasp, or NetBeans.

The JDK we recommend is OpenJDK, an open source implementation of

Java SE (Standard Edition). The IDE we recommend is DrJava, which is

an open source development environment written in Java (see Figure A.1).

To install OpenJDK, visit https://adoptopenjdk.net. Download and run

the installer for your operating system.

To install DrJava, visit http://drjava.org/ and download the JAR file.

We recommend that you save it to your Desktop folder or another convenient

location. Simply double-click the JAR file to run DrJava. Refer to the DrJava

documentation (http://drjava.org/docs/quickstart/) for more details.

Figure A.1: DrJava editing the Hello World program.

When running DrJava for the first time, we recommend you change three

settings from the Edit > Preferences menu under Miscellaneous: set the Indent

Level to 4, check the Automatically Close Block Comments box, and uncheck

the Keep Emacs-style Backup Files box.

https://adoptopenjdk.net
http://drjava.org/
http://drjava.org/docs/quickstart/

A.2 DrJava Interactions 319

A.2 DrJava Interactions

One of the most useful features of DrJava is the “Interactions” pane at the

bottom of the window. It provides the ability to try out code quickly, without

having to write a class definition and save/compile/run the program. Figure A.2

shows an example.

Figure A.2: The Interactions pane in DrJava.

There is one subtle detail to note when using the Interactions pane. If you

don’t end an expression (or statement) with a semicolon, DrJava automatically

displays its value. Notice in Figure A.2 that the variable declarations end with

semicolons, but the logic expressions in the following lines do not. This feature

saves you from having to type System.out.println every time.

What’s nice about this feature is that you don’t have to create a new class,

declare a mainmethod, write arbitrary expressions inside System.out.println

statements, save the source file, and get all of your code to compile in advance.

Also, you can press the up/down arrows on the keyboard to repeat previous

commands and experiment with incremental differences.

320 Appendix A Tools

A.3 Command-Line Interface

One of the most powerful and useful skills you can learn is how to use the

command-line interface, also called the “terminal”. The command line is a

direct interface to the operating system. It allows you to run programs, manage

files and directories, and monitor system resources. Many advanced tools, both

for software development and general-purpose computing, are available only

at the command line.

Many good tutorials are available online for learning the command line for your

operating system; just search the web for “command line tutorial”. On Unix

systems like Linux and macOS, you can get started with just four commands:

change the working directory (cd), list directory contents (ls), compile Java

programs (javac), and run Java programs (java).

Figure A.3 shows an example in which the Hello.java source file is stored in

the Desktop directory. After changing to that location and listing the files, we

use the javac command to compile Hello.java. Running ls again, we see that

the compiler generated a new file, Hello.class, which contains the byte code.

We run the program by using the java command, which displays the output

on the following line.

Figure A.3: Compiling and running Hello.java from the command line.

Note that the javac command requires a filename (or multiple source files

separated by spaces), whereas the java command requires a single class name.

If you use DrJava, it runs these commands for you behind the scenes and

displays the output in the Interactions pane.

A.4 Command-Line Testing 321

Taking time to learn this efficient and elegant way of interacting with the

operating system will make you more productive. People who don’t use the

command line don’t know what they’re missing.

A.4 Command-Line Testing

As described in Section 1.10, it’s more effective to program and debug your

code little by little than to attempt writing everything all at once. And after

you’ve completed programming an algorithm, it’s important to test that it

works correctly on a variety of inputs.

Throughout the book, we illustrate techniques for testing your programs.

Most, if not all, testing is based on a simple idea: does the program do what

we expect it to do? For simple programs, it’s not difficult to run them several

times and see what happens. But at some point, you will get tired of typing

the same test cases over and over.

We can automate the process of entering input and comparing expected output

with actual output using the command line. The basic idea is to store the test

cases in plain text files and trick Java into thinking they are coming from the

keyboard. Here are step-by-step instructions:

1. Make sure you can compile and run the Convert.java example in the

ch03 directory of ThinkJavaCode2. (See page xviii for instructions on

how to download the repository.)

2. In the same directory as Convert.java, create a plain text file named

test.in (“in” is for “input”). Enter the following line and save the file:

193.04

3. Create a second plain text file named test.exp (“exp” is for “expected”).

Enter the following line and save the file:

193.04 cm = 6 ft, 4 in

4. Open a terminal, and change to the directory with these files. Run the

following command to test the program:

java Convert < test.in > test.out

322 Appendix A Tools

On the command line, < and > are redirection operators. The first one

redirects the contents of test.in to System.in, as if it were entered from the

keyboard. The second one redirects the contents of System.out to a new file

test.out, much like a screen capture. In other words, the test.out file contains

the output of your program.

By the way, it’s perfectly okay to compile your programs in DrJava (or another

environment) and run them from the command line. Knowing both techniques

allows you to use the right tool for the job.

Figure A.4: Using meld to compare expected output with the actual output.

At this point, we just need to compare the contents test.out with test.exp.

If the files are the same, then the program outputted what we expected it

to output. If not, then we found a bug, and we can use the output to begin

debugging our program. Fortunately, there’s a simple way to compare files on

the command line:

diff test.exp test.out

The diff utility summarizes the differences between two files. If there are

no differences, it displays nothing, which in our case is what we want. If the

expected output differs from the actual output, we need to continue debugging.

Usually, the program is at fault, and diff provides some insight about what

A.5 Running Checkstyle 323

is broken. But there’s also a chance that we have a correct program and the

expected output is wrong.

Interpreting the results from diff can be confusing, but fortunately many

graphical tools can show the differences between two files. For example, on

Windows you can install WinMerge, on macOS you can use opendiff (which

comes with Xcode), and on Linux there’s meld, shown in Figure A.4.

Regardless of what tool you use, the goal is the same. Debug your program

until the actual output is identical to the expected output.

A.5 Running Checkstyle

Checkstyle is a command-line tool that can be used to determine if your source

code follows a set of style rules. It also checks for common programming

mistakes, such as class and method design problems.

You can download the latest version as a JAR file from https://checkstyle.

sourceforge.io/. To run Checkstyle, move (or copy) the JAR file to the

same directory as your program. Open a terminal in that location, and run

the following command:

java -jar checkstyle-*-all.jar -c /google_checks.xml *.java

The * characters are wildcards that match whatever version of Checkstyle

you have and whatever Java source files are present. The output indicates

the file and line number of each problem. This example refers to a method

beginning on line 93, column 5 of Hello.java:

Hello.java:93:5: Missing a Javadoc comment

The file /google_checks.xml is inside the JAR file and represents most of

Google’s style rules. You can alternatively use /sun_checks.xml or provide

your own configuration file. See Checkstyle’s website for more information.

If you apply Checkstyle to your source code often, you will likely internalize

good style habits over time. But there are limits to what automatic style

checkers can do. In particular, they can’t evaluate the quality of your comments,

the meaning of your variable names, or the structure of your algorithms.

https://checkstyle.sourceforge.io/
https://checkstyle.sourceforge.io/

324 Appendix A Tools

Good comments make it easier for experienced developers to identify errors in

your code. Good variable names communicate the intent of your program and

how the data is organized. And good programs are designed to be efficient

and demonstrably correct.

A.6 Tracing with a Debugger

A great way to visualize the flow of execution, including how parameters and

arguments work, is to use a debugger. Most debuggers make it possible to

do the following:

� Set a breakpoint, a line where you want the program to pause.

� Step through the code one line at a time and watch what it does.

� Check the values of variables and see when and how they change.

For example, open any program in DrJava and move the cursor to the first

line of main. Press Ctrl+B to toggle a breakpoint on the current line; it should

now be highlighted in red. Press Ctrl+Shift+D to turn on “Debug Mode”; a

new pane should appear at the bottom of the window. These commands are

also available from the Debugger menu, in case you forget the shortcut keys.

When you run the program, execution pauses at the first breakpoint. The

debugging pane displays the call stack, with the current method on top of

the stack, as shown in Figure A.5. You might be surprised to see how many

methods were called before the main method!

To the right are several buttons that allow you to step through the code at

your own pace. You can also click Automatic Trace to watch DrJava run your

code one line at a time.

Using a debugger is like having the computer proofread your code out loud.

When the program is paused, you can examine (or even change) the value of

any variable by using the Interactions pane.

Tracing allows you to follow the flow of execution and see how data passes

from one method to another. You might expect the code do one thing, but

A.7 Testing with JUnit 325

Figure A.5: The DrJava debugger. Execution is currently paused on the first
line of printTwice. There is a breakpoint on the first line of main.

then the debugger shows it doing something else. At that moment, you gain

insight about what may be wrong with the code.

You can edit your code while debugging it, but we don’t recommend it. If you

add or delete multiple lines of code while the program is paused, the results

can be confusing.

See http://drjava.org/docs/user/ch09.html for more information about

using the debugger feature of DrJava.

A.7 Testing with JUnit

When beginners start writing methods, they usually test them by invoking

them from main and checking the results by hand. For example, to test

fibonacci from Section 6.4, we could write this:

http://drjava.org/docs/user/ch09.html

326 Appendix A Tools

public static void main(String[] args) {

if (fibonacci(1) != 1) {

System.err.println("fibonacci(1) is incorrect");

}

if (fibonacci(2) != 1) {

System.err.println("fibonacci(2) is incorrect");

}

if (fibonacci(3) != 2) {

System.err.println("fibonacci(3) is incorrect");

}

}

This test code is self-explanatory, but it’s longer than it needs to be, and

it doesn’t scale very well. In addition, the error messages provide limited

information. For cases where we know the right answer, we can do better by

writing unit tests.

JUnit (https://junit.org/) is a common testing tool for Java programs. To

use it, you have to create a test class that contains test methods.

For example, suppose that the fibonacci method belongs to a class named

Series. Here is a corresponding JUnit1 test class and test method:

import junit.framework.TestCase;

public class SeriesTest extends TestCase {

public void testFibonacci() {

assertEquals(1, Series.fibonacci(1));

assertEquals(1, Series.fibonacci(2));

assertEquals(2, Series.fibonacci(3));

}

}

This example uses the keyword extends, which indicates that the new class,

SeriesTest, is based on an existing class, TestCase. The TestCase class is

imported from the package junit.framework.

1This code is based on JUnit 3, which has been superseded but is the default version
supported by DrJava.

https://junit.org/

A.8 Vocabulary 327

The names in this example follow convention: if the name of your class is

Something, the name of the test class should be SomethingTest. And if there

is a method in Something named someMethod, there should be a method in

SomethingTest named testSomeMethod.

Many development environments can generate test classes and test methods

automatically. In DrJava, you can select New JUnit Test Case from the File

menu to generate an empty test class.

assertEquals is provided by the TestCase class. It takes two arguments and

checks whether they are equal. If so, it does nothing; otherwise, it displays

a detailed error message. The first argument is the expected value, which we

consider correct, and the second argument is the actual value we want to check.

If they are not equal, the test fails.

Using assertEquals is more concise than writing your own if statements

and System.err messages. JUnit provides additional assert methods, such

as assertNull, assertSame, and assertTrue, which can be used to design a

variety of tests.

To run JUnit directly from DrJava, click the Test button on the toolbar. If

all your test methods pass, you will see a green bar in the lower-right corner.

Otherwise, DrJava will take you directly to the first assertion that failed.

A.8 Vocabulary

IDE: An “integrated development environment” that includes tools for editing,

compiling, and debugging programs.

JDK: The “Java Development Kit”, which contains the compiler, Javadoc,

and other tools.

JVM: The “Java Virtual Machine”, which interprets the compiled byte code.

text editor: A program that edits plain text files, the format used by most

programming languages.

JAR: A “Java Archive”, which is essentially a ZIP file containing classes and

other resources.

328 Appendix A Tools

command-line interface: Ameans of interacting with the computer by issuing

commands in the form of successive lines of text.

redirection operator: A command-line feature that substitutes System.in

and/or System.out with a plain text file.

wildcard: A command-line feature that allows you to specify a pattern of

filenames by using the * character.

debugger: A tool that allows you to run one statement at a time and see the

contents of variables.

breakpoint: A line of code at which the debugger will pause a running

program.

call stack: The history of method calls and where to resume execution after

each method returns.

unit test: Code that exercises a single method of a program, testing for

correctness and/or efficiency.

Appendix B

Javadoc

Java programs have three types of comments:

End-of-line comments: These start with // and generally contain short

phrases that explain specific lines of code.

Multiline comments: These start with /* and end with */, and are typically

used for copyright statements.

Documentation comments: These start with /** and end with */, and

describe what each class and method does.

End-of-line and multiline comments are written primarily for yourself. They

help you remember specific details about your source code. Documentation

comments, on the other hand, are written for others. They explain how to use

your classes and methods in other programs.

A nice feature of the Java language is the ability to embed documentation in

the source code itself. That way, you can write it as you go, and as things

change, it is easier to keep the documentation consistent with the code.

You can extract documentation from your source code, and generate well-

formatted HTML pages, using a tool called Javadoc. This tool is included

with the JDK, and it is widely used. In fact, the official documentation for

the Java library (https://thinkjava.org/apidoc) is generated by Javadoc.

https://thinkjava.org/apidoc

330 Appendix B Javadoc

B.1 Reading Documentation

As an example, let’s look at the documentation for Scanner, a class we first

used in Section 3.2. You can find the documentation quickly by doing a web

search for “Java Scanner”. Figure B.1 shows a screenshot of the page.

Figure B.1: The documentation for Scanner.

Documentation for other classes uses a similar format. The first line is the

package that contains the class, such as java.util. The second line is the

name of the class. The “All Implemented Interfaces” section lists some of the

functionality a Scanner has.

The next section of the documentation is a narrative that explains the purpose

of the class and includes examples of how to use it. This text can be difficult

to read, because it may use terms you have not yet learned. But the examples

are often very useful. A good way to get started with a new class is to paste

the examples into a test file and see if you can compile and run them.

One of the examples shows how you can use a Scanner to read input from a

String instead of System.in:

B.1 Reading Documentation 331

String input = "1 fish 2 fish red fish blue fish";

Scanner s = new Scanner(input);

After the narrative, code examples, and other details, you will find the following

tables:

Constructor Summary: Ways of creating, or constructing, a Scanner.

Method Summary: The list of methods that the Scanner class provides.

Constructor Detail: More information about how to create a Scanner.

Method Detail: More information about each method.

For example, here is the summary information for nextInt:

public int nextInt()

Scans the next token of the input as an int.

The first line is the method’s signature, which specifies the name of the

method and its parameters (none). The type it returns (int) is not part of

the signature. The next line is a short description of what it does.

The “Method Detail” explains more:

public int nextInt()

Scans the next token of the input as an int.

An invocation of this method of the form nextInt() behaves in

exactly the same way as the invocation nextInt(radix), where

radix is the default radix of this scanner.

Returns:

the int scanned from the input

Throws:

InputMismatchException - if the next token does not match

the Integer regular expression, or is out of range

NoSuchElementException - if input is exhausted

IllegalStateException - if this scanner is closed

332 Appendix B Javadoc

The “Returns” section describes the result when the method succeeds. In

contrast, the “Throws” section describes possible errors and exceptions that

may occur. Exceptions are said to be thrown, like a referee throwing a flag, or

like a toddler throwing a fit.

It might take you some time to get comfortable reading documentation and

learning which parts to ignore. But it’s worth the effort. Knowing what’s

available in the library helps you avoid reinventing the wheel. And a little bit

of documentation can save you a lot of debugging.

B.2 Writing Documentation

As you benefit from reading good documentation, you should “pay it forward”

by writing good documentation.

Javadoc scans your source files looking for documentation comments, also

known as “Javadoc comments”. They begin with /** (two stars) and end with

*/ (one star). Anything in between is considered part of the documentation.

Here’s a class definition with two Javadoc comments, one for the Goodbye class

and one for the main method:

/**

* Example program that demonstrates print vs println.

*/

public class Goodbye {

/**

* Prints a greeting.

*/

public static void main(String[] args) {

System.out.print("Goodbye, "); // note the space

System.out.println("cruel world");

}

}

The class comment explains the purpose of the class. The method comment

explains what the method does.

B.3 Javadoc Tags 333

Notice that this example also has an end-of-line comment (//). In general,

these comments are short phrases that help explain complex parts of a program.

They are intended for other programmers reading and maintaining the source

code.

In contrast, Javadoc comments are longer, usually complete sentences. They

explain what each method does, but they omit details about how the method

works. And they are intended for people who will use the methods without

looking at the source code.

Appropriate comments and documentation are essential for making source

code readable. And remember that the person most likely to read your code

in the future, and appreciate good documentation, is you.

B.3 Javadoc Tags

It’s generally a good idea to document each class and method, so that other

programmers can understand what they do without having to read the code.

To organize the documentation into sections, Javadoc supports optional tags

that begin with the at sign (@). For example, we can use @author and

@version to provide information about the class:

/**

* Utility class for extracting digits from integers.

*

* @author Chris Mayfield

* @version 1.0

*/

public class DigitUtil {

Documentation comments should begin with a description of the class or

method, followed by the tags. These two sections are separated by a blank

line (not counting the *).

For methods, we can use @param and @return to provide information about

parameters and return values:

334 Appendix B Javadoc

/**

* Tests whether x is a single digit integer.

*

* @param x the integer to test

* @return true if x has one digit, false otherwise

*/

public static boolean isSingleDigit(int x) {

Figure B.2 shows part of the resulting HTML page generated by Javadoc.

Notice the relationship between the Javadoc comment (in the source code)

and the resulting documentation (in the HTML page).

isSingleDigit

public static boolean isSingleDigit(int x)

Tests whether x is a single digit integer.

Parameters:

x the integer to test

Returns:

true if x has one digit, false otherwise

Figure B.2: HTML documentation for isSingleDigit.

When writing parameter comments, do not include a hyphen (-) after the

@param tag. Otherwise, you will have two hyphens in the resulting HTML

documentation.

Notice also that the @return tag should not specify the type of the method.

Comments like @return boolean are not useful, because you already know

the return type from the method’s signature.

Methods with multiple parameters should have separate @param tags that

describe each one. Void methods should have no @return tag, since they do

not return a value. Each tag should be on its own line in the source code.

B.4 Example Source File 335

B.4 Example Source File

Now let’s take a look at a more complete example. The code for this section

is in the appb directory of ThinkJavaCode2. See page xviii for instructions on

how to download the repository.

Professional-grade source files often begin with a copyright statement. This

text spans multiple lines, but it is not part of the documentation. So we

use a multiline comment (/*) rather than a documentation comment (/**).

Our example source file, Convert.java, includes the MIT License (https://

opensource.org/licenses/MIT):

/*

* Copyright (c) 2019 Allen Downey and Chris Mayfield

*

* Permission is hereby granted, free of charge, to any person obtaining a copy

* of this software and associated documentation files (the "Software"), to deal

* in the Software without restriction, including without limitation the rights

* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell

* copies of the Software, and to permit persons to whom the Software is

* furnished to do so, subject to the following conditions:

*

* The above copyright notice and this permission notice shall be included in

* all copies or substantial portions of the Software.

*

* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE

* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER

* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,

* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE

* SOFTWARE.

*/

Import statements generally follow the copyright text. After that, we can

define the class itself and begin writing the documentation (/**):

import java.util.Scanner;

/**

* Methods for converting to/from the metric system.

*

* @author Allen Downey

* @author Chris Mayfield

* @version 6.1.5

*/

public class Convert {

https://opensource.org/licenses/MIT
https://opensource.org/licenses/MIT

336 Appendix B Javadoc

A common mistake that beginners make is to put import statements between

the documentation and the public class line. Doing so separates the documentation

from the class itself. To avoid this issue, always make the end of the comment

(the */) “touch” the word public.

This class has two constants and three methods. The constants are self-

explanatory, so there is no need to write documentation for them:

public static final double CM_PER_INCH = 2.54;

public static final int IN_PER_FOOT = 12;

The methods, on the other hand, could use some explanation. Each documentation

comment includes a description, followed by a blank line, followed by a @param

tag for each parameter, followed by a @return tag:

/**

* Converts a measurement in centimeters to inches.

*

* @param cm length in centimeters

* @return length in inches

*/

public static double toImperial(double cm) {

return cm / CM_PER_INCH;

}

/**

* Converts a length in feet and inches to centimeters.

*

* @param feet how many feet

* @param inches how many inches

* @return length in centimeters

*/

public static double toMetric(int feet, int inches) {

int total = feet * IN_PER_FOOT + inches;

return total * CM_PER_INCH;

}

The main method has a similar documentation comment, except there is no

@return tag since the method is void:

B.4 Example Source File 337

/**

* Tests the conversion methods.

*

* @param args command-line arguments

*/

public static void main(String[] args) {

double cm, result;

int feet, inches;

Scanner in = new Scanner(System.in);

// test the Imperial conversion

System.out.print("Exactly how many cm? ");

cm = in.nextDouble();

result = toImperial(cm);

System.out.printf("That's %.2f inches\n", result);

System.out.println();

// test the Metric conversion

System.out.print("Now how many feet? ");

feet = in.nextInt();

System.out.print("And how many inches? ");

inches = in.nextInt();

result = toMetric(feet, inches);

System.out.printf("That's %.2f cm\n", result);

}

Here are two ways you can run the Javadoc tool on this example program:

� From the command line, go to the location for Convert.java. The -d

option of javadoc indicates where to generate the HTML files:

javadoc -d doc Convert.java

� From DrJava, click the Javadoc button on the toolbar. The IDE will

then prompt you for a location to generate the HTML files.

For more examples of what you can do with Javadoc comments, see the source

code of any Java library class (e.g., Scanner.java). Section 11.6 explains how

to find the source files for the Java library on your computer.

338 Appendix B Javadoc

B.5 Vocabulary

documentation: Comments that describe the technical operation of a class

or method.

Javadoc: A tool that reads Java source code and generates documentation

in HTML format.

signature: The first line of a method that defines its name and parameters.

tag: A label that begins with an at sign (@) and is used by Javadoc to organize

documentation into sections.

description: The first line of a documentation comment that explains what

the class/method does.

Appendix C

Graphics

The Java library includes the package java.awt for drawing 2D graphics.

AWT stands for “Abstract Window Toolkit”. We are only going to scratch

the surface of graphics programming. You can read more about it in the Java

tutorials (see https://thinkjava.org/java2d).

C.1 Creating Graphics

There are several ways to create graphics in Java; the simplest way is to use

java.awt.Canvas and java.awt.Graphics. A Canvas is a blank rectangular

area of the screen onto which the application can draw. The Graphics class

provides basic drawing methods such as drawLine, drawRect, and drawString.

Here is an example program that draws a circle by using the fillOvalmethod:

import java.awt.Canvas;

import java.awt.Graphics;

import javax.swing.JFrame;

public class Drawing extends Canvas {

https://thinkjava.org/java2d

340 Appendix C Graphics

public static void main(String[] args) {

JFrame frame = new JFrame("My Drawing");

frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

Drawing drawing = new Drawing();

drawing.setSize(400, 400);

frame.add(drawing);

frame.pack();

frame.setVisible(true);

}

public void paint(Graphics g) {

g.fillOval(100, 100, 200, 200);

}

}

The Drawing class extends Canvas, so it has all the methods provided by

Canvas, including setSize. You can read about the other methods in the

documentation, which you can find by doing a web search for “Java Canvas”.

In the main method, we do the following:

1. Create a JFrame object, which is the window that will contain the canvas.

2. Create a Drawing object (which is the canvas), set its width and height,

and add it to the frame.

3. Pack the frame (resize it) to fit the canvas, and display it on the screen.

Once the frame is visible, the paint method is called whenever the canvas

needs to be drawn; for example, when the window is moved or resized. If you

run this code, you should see a black circle on a gray background.

The application doesn’t end after the main method returns; instead, it waits

for the JFrame to close. When the JFrame closes, it calls System.exit, which

ends the program.

C.2 Graphics Methods

You are probably used to Cartesian coordinates, where x and y values can

be positive or negative. In contrast, Java uses a coordinate system where the

C.2 Graphics Methods 341

origin is in the upper-left corner. That way, x and y can always be positive

integers. Figure C.1 shows these coordinate systems side by side.

positive y

negative y

Cartesian coordinates

positive x

origin (0, 0)

negative x

Java graphical coordinates

positive y

positive x

origin (0, 0)

Figure C.1: The difference between Cartesian coordinates and Java graphical
coordinates.

Graphical coordinates are measured in pixels; each pixel corresponds to a dot

on the screen.

To draw on the canvas, you invoke methods on a Graphics object. You don’t

have to create the Graphics object; it gets created when you create the Canvas,

and it gets passed as an argument to paint.

The previous example used fillOval, which has the following signature:

/**

* Fills an oval bounded by the specified rectangle with

* the current color.

*/

public void fillOval(int x, int y, int width, int height)

The four parameters specify a bounding box, which is the rectangle in which

the oval is drawn. x and y specify the location of the upper-left corner of the

bounding box. The bounding box itself is not drawn (see Figure C.2).

To choose the color of a shape, invoke setColor on the Graphics object:

g.setColor(Color.RED);

342 Appendix C Graphics

bounding box

inscribed oval

Figure C.2: An oval inside its bounding box.

The setColor method determines the color of everything that gets drawn

afterward. Color.red is a constant provided by the Color class; to use it, you

have to import java.awt.Color. Other colors include the following:

BLACK BLUE CYAN DARKGRAY GRAY LIGHTGRAY

GREEN MAGENTA ORANGE PINK WHITE YELLOW

You can create your own colors by specifying the red, green, and blue (RGB)

components. For example:

Color purple = new Color(128, 0, 128);

Each value is an integer in the range 0 (darkest) to 255 (lightest). The color

(0, 0, 0) is black, and (255, 255, 255) is white.

You can set the background color of the Canvas by invoking setBackground:

canvas.setBackground(Color.WHITE);

C.3 Example Drawing

Suppose we want to draw a “Hidden Mickey”, which is an icon that represents

Mickey Mouse (see https://en.wikipedia.org/wiki/Hidden_Mickey). We

can use the oval we just drew as the face, and then add two ears. To make the

code more readable, let’s use Rectangle objects to represent bounding boxes.

Here’s a method that takes a Rectangle and invokes fillOval:

https://en.wikipedia.org/wiki/Hidden_Mickey

C.3 Example Drawing 343

public void boxOval(Graphics g, Rectangle bb) {

g.fillOval(bb.x, bb.y, bb.width, bb.height);

}

And here’s a method that draws Mickey Mouse:

public void mickey(Graphics g, Rectangle bb) {

boxOval(g, bb);

int hx = bb.width / 2;

int hy = bb.height / 2;

Rectangle half = new Rectangle(bb.x, bb.y, hx, hy);

half.translate(-hx / 2, -hy / 2);

boxOval(g, half);

half.translate(hx * 2, 0);

boxOval(g, half);

}

The first line draws the face. The next three lines create a smaller rectangle

for the ears. We translate the rectangle up and left for the first ear, then to

the right for the second ear. The result is shown in Figure C.3.

Figure C.3: A Hidden Mickey drawn using Java graphics.

You can read more about Rectangle and translate in Chapter 11. See the

exercises at the end of this appendix for more example drawings.

344 Appendix C Graphics

C.4 Vocabulary

AWT: The “Abstract Window Toolkit”, a Java package for creating graphical

user interfaces.

coordinate: A value that specifies a location in a 2D graphical window.

pixel: The unit in which coordinates are measured.

bounding box: A way to specify the coordinates of a rectangular area.

RGB: A color model based on adding red, green, and blue light.

C.5 Exercises

The code for this chapter is in the appc directory of ThinkJavaCode2. See

page xviii for instructions on how to download the repository. Before you

start the exercises, we recommend that you compile and run the examples.

Exercise C.1 Draw the flag of Japan: a red circle on a white background

that is wider than it is tall.

Exercise C.2 Modify Mickey.java to draw ears on the ears, and ears on

those ears, and more ears all the way down until the smallest ears are only 3

pixels wide. The result should look like Figure C.4. Hint: You should have to

add or modify only a few lines of code.

Figure C.4: A recursive shape we call “Mickey Moose”.

C.5 Exercises 345

Exercise C.3 In this exercise, you will draw “Moiré patterns” that seem

to shift around as you move. For an explanation of what is going on, see

https://en.wikipedia.org/wiki/Moire_pattern.

1. Open Moire.java and read the paint method. Draw a sketch of what

you expect it to do. Now run it. Did you get what you expected?

2. Modify the program so that the space between the circles is larger or

smaller. See what happens to the image.

3. Modify the program so that the circles are drawn in the center of the

screen and concentric, as in Figure C.5 (left). The distance between the

circles should be small enough that the Moiré interference is apparent.

Concentric circles Radial Moire pattern

Figure C.5: Graphical patterns that can exhibit Moiré interference.

4. Write a method named radial that draws a radial set of line segments

as shown in Figure C.5 (right), but they should be close enough together

to create a Moiré pattern.

5. Just about any kind of graphical pattern can generate Moiré-like interference

patterns. Play around and see what you can create.

https://en.wikipedia.org/wiki/Moire_pattern

346 Appendix C Graphics

Appendix D

Debugging

Although there are debugging suggestions throughout the book, we thought

it would be useful to say more in an appendix. If you are having a hard time

debugging, you might want to review this appendix from time to time.

The best debugging strategy depends on what kind of error you have:

� Compile-time errors indicate that there is something wrong with the

syntax of the program. Example: omitting the semicolon at the end of

a statement.

� Run-time errors are produced if something goes wrong while the program

is running. Example: an infinite recursion eventually causes a StackOverflowError.

� Logic errors cause the program to do the wrong thing. Example: an

expression may not be evaluated in the order you expect.

The following sections are organized by error type; some techniques are useful

for more than one type.

D.1 Compile-Time Errors

The best kind of debugging is the kind you don’t have to do because you avoid

making errors in the first place. Incremental development, which we presented

348 Appendix D Debugging

in Section 4.9, can help. The key is to start with a working program and add

small amounts of code at a time. When there is an error, you will have a

pretty good idea of where it is.

Nevertheless, you might find yourself in one of the following situations. For

each situation, we have some suggestions about how to proceed.

The compiler is spewing error messages.

If the compiler reports 100 error messages, that doesn’t mean there are 100

errors in your program. When the compiler encounters an error, it often gets

thrown off track for a while. It tries to recover and pick up again after the

first error, but sometimes it reports spurious errors.

Only the first error message is truly reliable. We suggest that you fix only

one error at a time and then recompile the program. You may find that one

semicolon or brace “fixes” 100 errors.

I’m getting a weird compiler message, and it won’t go

away.

First of all, read the error message carefully. It may be written in terse jargon,

but often there is a carefully hidden kernel of information.

If nothing else, the message will tell you where in the program the problem

occurred. Actually, it tells you where the compiler was when it noticed a

problem, which is not necessarily where the error is. Use the information the

compiler gives you as a guideline, but if you don’t see an error where the

compiler is pointing, broaden the search.

Generally, the error will be prior to the location of the error message, but

in some cases it will be somewhere else entirely. For example, if you get an

error message at a method invocation, the actual error may be in the method

definition itself.

If you don’t find the error quickly, take a breath and look more broadly at the

entire program. Make sure the program is indented properly; that makes it

easier to spot syntax errors.

D.1 Compile-Time Errors 349

Now, start looking for common syntax errors:

1. Check that all parentheses and brackets are balanced and properly nested.

All method definitions should be nested within a class definition. All

program statements should be within a method definition.

2. Remember that uppercase letters are not the same as lowercase letters.

3. Check for semicolons at the end of statements (and no semicolons after

curly braces).

4. Make sure that any strings in the code have matching quotation marks.

Make sure that you use double quotes for strings, and single quotes for

characters.

5. For each assignment statement, make sure that the type on the left is

the same as the type on the right. Make sure that the expression on the

left is a variable name or something else that you can assign a value to

(like an element of an array).

6. For each method invocation, make sure that the arguments you provide

are in the right order and have the right type, and that the object you

are invoking the method on is the right type.

7. If you are invoking a value method, make sure you are doing something

with the result. If you are invoking a void method, make sure you are

not trying to do something with the result.

8. If you are invoking an instance method, make sure you are invoking it

on an object with the right type. If you are invoking a static method

from outside the class where it is defined, make sure you specify the class

name (using dot notation).

9. Inside an instance method, you can refer to the instance variables without

specifying an object. If you try that in a static method—with or without

this—you get a message like “non-static variable x cannot be referenced

from a static context.”

If nothing works, move on to the next section. . .

350 Appendix D Debugging

I can’t get my program to compile no matter what I do.

If the compiler says there is an error and you don’t see it, that might be

because you and the compiler are not looking at the same code. Check your

development environment to make sure the program you are editing is the

program the compiler is compiling.

This situation is often the result of having multiple copies of the same program.

You might be editing one version of the file but compiling a different version.

If you are not sure, try putting an obvious and deliberate syntax error right

at the beginning of the program. Now compile again. If the compiler doesn’t

find the new error, there is probably something wrong with the way you set

up the development environment.

If you have examined the code thoroughly, and you are sure the compiler is

compiling the right source file, it is time for desperate measures—debugging

by bisection:

� Make a backup of the file you are working on. If you are working on

Bob.java, make a copy called Bob.java.old.

� Delete about half the code from Bob.java. Try compiling again.

– If the program compiles now, you know the error is in the code you

deleted. Bring back about half of what you deleted and repeat.

– If the program still doesn’t compile, the error must be in the code

that remains. Delete about half of the remaining code and repeat.

� Once you have found and fixed the error, start bringing back the code

you deleted, a little bit at a time.

This process is ugly, but it goes faster than you might think and is very reliable.

It works for other programming languages too!

I did what the compiler told me to do, but it still doesn’t

work.

Some error messages come with tidbits of advice, like “class Golfer must be

declared abstract. It does not define int compareTo(java.lang.Object) from

D.2 Run-Time Errors 351

interface java.lang.Comparable.” It sounds like the compiler is telling you to

declare Golfer as an abstract class, and if you are reading this book, you

probably don’t know what that is or how to do it.

Fortunately, the compiler is wrong. The solution in this case is to make sure

Golfer has a method called compareTo that takes an Object as a parameter.

Don’t let the compiler lead you by the nose. Error messages give you evidence

that something is wrong, but the remedies they suggest are unreliable.

D.2 Run-Time Errors

It’s not always clear what causes a run-time error, but you can often figure

things out by adding print statements to your program.

My program hangs.

If a program stops and seems to be doing nothing, we say it is “hanging”.

Often that means it is caught in an infinite loop or an infinite recursion.

� If you suspect that a particular loop is the problem, add a print statement

immediately before the loop that says "entering the loop" and another

immediately after that says "exiting the loop".

Run the program. If you get the first message and not the second,

you know where the program is getting stuck. Go to the section titled

“Infinite loop”.

� Most of the time, an infinite recursion will cause the program to run for

a while and then produce a StackOverflowError. If that happens, go

to the section titled “Infinite recursion”.

If you are not getting a StackOverflowError, but you suspect there is

a problem with a recursive method, you can still use the techniques in

the infinite recursion section.

� If neither of the previous suggestions helps, you might not understand

the flow of execution in your program. Go to the section titled “Flow of

execution”.

352 Appendix D Debugging

Infinite loop

If you think you have an infinite loop and you know which loop it is, add a

print statement at the end of the loop that displays the values of the variables

in the condition, and the value of the condition.

For example:

while (x > 0 && y < 0) {

// do something to x

// do something to y

System.out.println("x: " + x);

System.out.println("y: " + y);

System.out.println("condition: " + (x > 0 && y < 0));

}

Now when you run the program, you see three lines of output for each time

through the loop. The last time through the loop, the condition should be

false. If the loop keeps going, you will see the values of x and y, and you

might figure out why they are not getting updated correctly.

Infinite recursion

Most of the time, an infinite recursion will cause the program to throw a

StackOverflowError. But if the program is slow, it may take a long time to

fill the stack.

If you know which method is causing an infinite recursion, check that there is a

base case. There should be a condition that makes the method return without

making a recursive invocation. If not, you need to rethink the algorithm and

identify a base case.

If there is a base case, but the program doesn’t seem to be reaching it, add a

print statement at the beginning of the method that displays the parameters.

Now when you run the program, you see a few lines of output every time

the method is invoked, and you can see the values of the parameters. If the

parameters are not moving toward the base case, you might see why not.

D.2 Run-Time Errors 353

Flow of execution

If you are not sure how the flow of execution is moving through your program,

add print statements to the beginning of each method with a message like

"entering method foo", where foo is the name of the method. Now when

you run the program, it displays a trace of each method as it is invoked.

You can also display the arguments each method receives. When you run the

program, check whether the values are reasonable, and check for one of the

most common errors—providing arguments in the wrong order.

When I run the program, I get an exception.

When an exception occurs, Java displays a message that includes the name

of the exception, the line of the program where the exception occurred, and

a stack trace. The stack trace includes the method that was running, the

method that invoked it, the method that invoked that one, and so on.

The first step is to examine the place in the program where the error occurred

and see if you can figure out what happened:

NullPointerException:

You tried to access an instance variable or invoke a method on an object

that is currently null. You should figure out which variable is null and

then figure out how it got to be that way.

Remember that when you declare a variable with an array type, its

elements are initially null until you assign a value to them. For example,

this code causes a NullPointerException:

int[] array = new Point[5];

System.out.println(array[0].x);

ArrayIndexOutOfBoundsException:

The index you are using to access an array is either negative or greater

than array.length - 1. If you can find the site where the problem is,

add a print statement immediately before it to display the value of the

index and the length of the array. Is the array the right size? Is the

index the right value?

354 Appendix D Debugging

Now work your way backward through the program and see where the

array and the index come from. Find the nearest assignment statement

and see if it is doing the right thing. If either one is a parameter, go

to the place where the method is invoked and see where the values are

coming from.

StackOverflowError:

See “Infinite recursion” on page 352.

FileNotFoundException:

This means Java didn’t find the file it was looking for. If you are using a

project-based development environment like Eclipse, you might have to

import the file into the project. Otherwise, make sure the file exists and

that the path is correct. This problem depends on your filesystem, so it

can be hard to track down.

ArithmeticException:

Something went wrong during an arithmetic operation; for example,

division by zero.

I added so many print statements I get inundated with

output.

One of the problems with using print statements for debugging is that you can

end up buried in output. There are two ways to proceed: either simplify the

output or simplify the program.

To simplify the output, you can remove or comment out print statements

that aren’t helping, or combine them, or format the output so it is easier to

understand. As you develop a program, you should write code to generate

concise, informative traces of what the program is doing.

To simplify the program, scale down the problem the program is working on.

For example, if you are sorting an array, sort a small array. If the program

takes input from the user, give it the simplest input that causes the error.

Also, clean up the code. Remove unnecessary or experimental parts, and

reorganize the program to make it easier to read. For example, if you suspect

D.3 Logic Errors 355

that the error is in a deeply nested part of the program, rewrite that part

with a simpler structure. If you suspect a large method, split it into smaller

methods and test them separately.

The process of finding the minimal test case often leads you to the bug. For

example, if you find that a program works when the array has an even number

of elements, but not when it has an odd number, that gives you a clue about

what is going on.

Reorganizing the program can help you find subtle bugs. If you make a change

that you think doesn’t affect the program, and it does, that can tip you off.

D.3 Logic Errors

My program doesn’t work.

Logic errors are hard to find because the compiler and interpreter provide

no information about what is wrong. Only you know what the program is

supposed to do, and only you know that it isn’t doing it.

The first step is to make a connection between the code and the behavior you

get. You need a hypothesis about what the program is actually doing. Here

are some questions to ask yourself:

� Is there something the program was supposed to do that doesn’t seem to

be happening? Find the section of the code that performs that function,

and make sure it is executing when you think it should. See “Flow of

execution” on page 353.

� Is something happening that shouldn’t? Find code in your program that

performs that function, and see if it is executing when it shouldn’t.

� Is a section of code producing an unexpected effect? Make sure you

understand the code, especially if it invokes methods in the Java library.

Read the documentation for those methods, and try them out with

simple test cases. They might not do what you think they do.

356 Appendix D Debugging

To program, you need a mental model of what your code does. If it doesn’t

do what you expect, the problem might not actually be the program; it might

be in your head.

The best way to correct your mental model is to break the program into

components (usually the classes and methods) and test them independently.

Once you find the discrepancy between your model and reality, you can solve

the problem.

Here are some common logic errors to check for:

� Remember that integer division always rounds toward zero. If you want

fractions, use double. More generally, use integers for countable things

and floating-point numbers for measurable things.

� Floating-point numbers are only approximate, so don’t rely on them to

be perfectly accurate. You should probably never use the == operator

with doubles. Instead of writing if (d == 1.23), do something like

if (Math.abs(d - 1.23) < .000001).

� When you apply the equality operator (==) to objects, it checks whether

they are identical. If you meant to check equivalence, you should use the

equals method instead.

� By default for user-defined types, equals checks identity. If you want a

different notion of equivalence, you have to override it.

� Inheritance can lead to subtle logic errors, because you can run inherited

code without realizing it. See “Flow of execution” on page 353.

I’ve got a big, hairy expression and it doesn’t do what I

expect.

Writing complex expressions is fine as long as they are readable, but they can

be hard to debug. It is often a good idea to break a complex expression into

a series of assignments to temporary variables:

rect.translate((int) Math.round(0.5 * rect.getWidth()),

(int) Math.round(0.5 * rect.getHeight()));

D.3 Logic Errors 357

This example can be rewritten as follows:

double halfWidth = 0.5 * rect.getWidth();

double halfHeight = 0.5 * rect.getHeight();

int dx = (int) Math.round(halfWidth);

int dy = (int) Math.round(halfHeight);

rect.translate(dx, dy);

The second version is easier to read, partly because the variable names provide

additional documentation. It’s also easier to debug, because you can check the

types of the temporary variables and display their values.

Another problem that can occur with big expressions is that the order of

operations may not be what you expect. For example, to evaluate x
2π
, you

might write this:

double y = x / 2 * Math.PI;

That is not correct, because multiplication and division have the same precedence,

and they are evaluated from left to right. This code computes x
2
π.

If you are not sure of the order of operations, check the documentation, or use

parentheses to make it explicit.

double y = x / (2 * Math.PI);

This version is correct, and more readable for other people who haven’t memorized

the order of operations.

My method doesn’t return what I expect.

If you have a return statement with a complex expression, you don’t have a

chance to display the value before returning:

public Rectangle intersection(Rectangle a, Rectangle b) {

return new Rectangle(

Math.min(a.x, b.x), Math.min(a.y, b.y),

Math.max(a.x + a.width, b.x + b.width)

- Math.min(a.x, b.x)

Math.max(a.y + a.height, b.y + b.height)

- Math.min(a.y, b.y));

}

358 Appendix D Debugging

Instead of writing everything in one statement, use temporary variables:

public Rectangle intersection(Rectangle a, Rectangle b) {

int x1 = Math.min(a.x, b.x);

int y1 = Math.min(a.y, b.y);

int x2 = Math.max(a.x + a.width, b.x + b.width);

int y2 = Math.max(a.y + a.height, b.y + b.height);

Rectangle rect = new Rectangle(x1, y1, x2 - x1, y2 - y1);

return rect;

}

Now you have the opportunity to display any of the intermediate variables

before returning. And by reusing x1 and y1, you made the code smaller too.

My print statement isn’t doing anything.

If you use the println method, the output is displayed immediately, but if

you use print (at least in some environments), the output gets stored without

being displayed until the next newline. If the program terminates without

displaying a newline, you may never see the stored output. If you suspect that

this is happening, change some or all of the print statements to println.

I’m really, really stuck and I need help.

First, get away from the computer for a few minutes. Computers emit waves

that affect the brain, causing the following symptoms:

� Frustration and rage.

� Superstitious beliefs (“the computer hates me”) and magical thinking

(“the program works only when I wear my hat backward”).

� Sour grapes (“this program is lame anyway”).

If you suffer from any of these symptoms, get up and go for a walk. When

you are calm, think about the program. What is it doing? What are possible

causes of that behavior? When was the last time you had a working program,

and what did you do next?

Sometimes it just takes time to find a bug. People often find bugs when they

let their mind wander. Good places to find bugs are buses, showers, and bed.

D.3 Logic Errors 359

No, I really need help.

It happens. Even the best programmers get stuck. Sometimes you need

another pair of eyes. Before you bring someone else in, make sure you have

tried the techniques described in this appendix.

Your program should be as simple as possible, and you should be working on

the smallest input that causes the error. You should have print statements in

the appropriate places (and the output they produce should be comprehensible).

You should understand the problem well enough to describe it concisely.

When you bring someone in to help, give them the information they need:

� What kind of bug is it? Compile-time, run-time, or logic?

� What was the last thing you did before this error occurred? What were

the last lines of code that you wrote, or what is the test case that fails?

� If the bug occurs at compile time or run time, what is the error message,

and what part of the program does it indicate?

� What have you tried, and what have you learned?

By the time you explain the problem to someone, you might see the answer.

This phenomenon is so common that some people recommend a debugging

technique called “rubber ducking”. Here’s how it works:

1. Buy a standard-issue rubber duck.

2. When you are really stuck on a problem, put the rubber duck on the

desk in front of you and say, “Rubber duck, I am stuck on a problem.

Here’s what’s happening. . . ”

3. Explain the problem to the rubber duck.

4. Discover the solution.

5. Thank the rubber duck.

We’re not kidding, it works! See https://en.wikipedia.org/wiki/Rubber_

duck_debugging.

https://en.wikipedia.org/wiki/Rubber_duck_debugging
https://en.wikipedia.org/wiki/Rubber_duck_debugging

360 Appendix D Debugging

I found the bug!

When you find the bug, the way to fix it is usually obvious. But not always.

Sometimes what seems to be a bug is really an indication that you don’t

understand the program, or your algorithm contains an error. In these cases,

you might have to rethink the algorithm or adjust your mental model. Take

some time away from the computer to think, work through test cases by hand,

or draw diagrams to represent the computation.

After you fix the bug, don’t just start in making new errors. Take a minute to

think about what kind of bug it was, why you made the error, how the error

manifested itself, and what you could have done to find it faster. Next time

you see something similar, you will be able to find the bug more quickly. Or

even better, you will learn to avoid that type of bug for good.

Index

Symbols
() parentheses, 29

; semicolon, 5, 30

= assignment operator, 21

== equals operator, 75, 210

[] square brackets, 127

% remainder operator, 47

<> angle brackets, 245

{} curly braces, 5, 77

A
abecedarian, 122, 162

abstract class, 292, 294

accessor, 207

accumulator, 140, 157

addition

integer, 24

string, 28

time, 212

address, 38, 50, 209

algorithm, 11, 15

alias, 130, 140

aliasing, 191, 240

allocate, 127, 140

anagram, 144

and operator, 81

angle brackets, 245

args, 170

argument, 58, 63, 69

ArithmeticException, 31, 354

array, 127, 140

2D, 233

copying, 130

element, 128

index, 128

length, 131

of cards, 235

of objects, 226

of strings, 221

printing, 129

ArrayIndexOutOfBoundsException,

128, 353

ArrayList, 245, 254

Arrays class, 129, 131

assignment, 21, 32, 75

attribute, 186, 198

automatic conversion, 26, 46, 59, 76

AWT, 185, 339, 344

B
base case, 96, 106

BigInteger, 174

binary, 101, 106

binary search, 229, 232

block, 76, 88

Boole, George, 75

362 INDEX

boolean, 75, 84, 88

bottom-up design, 262, 267

bounding box, 341, 344

brackets

angle, 245

square, 127

branch, 76, 88

breakpoint, 324, 328

bug, 11, 15

byte code, 7, 14

C
call stack, 96, 324, 328

camel case, 56

Canvas, 339

Card, 220

CardCollection, 254

case-sensitive, 5, 20, 56, 119

catch, 278

chaining, 78, 88

char, 8, 112, 151

Character, 169, 172

charAt, 112, 151

Checkstyle, 323

class, 5, 14, 214

definition, 201

relationships, 266

utility, 38

wrapper, 169

class diagram, 192, 198, 243, 266

class variable, 223, 232

client, 206, 215

CodingBat, 104

collection, 245, 248

Color, 341

command-line, 13

command-line interface, 170, 320,

328, 337

comment, 14, 88

documentation, 329, 332

end-of-line, 5, 329

multiline, 329

compareTo, 118, 225

comparison operator, 75

compile, 6, 14, 348

compile-time error, 29, 33, 347

complete ordering, 224

composition, 64, 70, 266

computer science, 11, 15

concatenate, 28, 33, 179

concrete class, 294

conditional statement, 76, 88

constant, 42, 51

constructor, 203, 215, 221, 235, 240

value, 204

Convert.java, 48, 335

coordinate, 185, 340, 344

countdown, 93

counter, 157

CPU, 2

Crazy Eights, 253

D
De Morgan’s laws, 82, 88

debugger, 324, 328

debugging, 11, 15, 347

by bisection, 350

experimental, 12

rubber duck, 359

Deck, 235

declaration, 19, 32, 185

decrement, 120, 148, 160

degrees, 62

dependent, 207

description, 333, 338

INDEX 363

design process, 66, 175, 179, 238,

262, 291

deterministic, 134, 140

diagram

class, 192, 243, 266

memory, 22, 111, 116, 130, 165,

186, 204, 211, 222, 235

stack, 61, 95, 98, 103

divisible, 47

division

floating-point, 25

integer, 25, 26

documentation, 48, 192, 330, 338

Javadoc comments, 332

Javadoc tags, 333

dot notation, 186, 198

Double, 169

double, 25

doubloon, 122, 162

Doubloon.java, 137

DrJava, 318

E
Echo.java, 39

efficiency, 158, 181, 229, 239, 249,

255, 313

Eights, 263

element, 127, 128, 140

empty array, 171, 179

empty string, 116, 121, 154

encapsulate, 175, 179

encapsulation, 183, 189

and generalization, 175

encode, 220, 232

enhanced for loop, 140, 159

equals, 118, 210, 211

equivalent, 210, 215, 224

error

compile-time, 29, 347

logic, 31, 347, 356

message, 12, 29, 348

rounding, 27

run-time, 31, 347

syntax, 349

escape sequence, 10, 15, 113, 152

exception, 31, 347, 353

Arithmetic, 31

ArrayIndexOutOfBounds, 128

InputMismatch, 86

Interrupted, 278

MissingFormatArgument, 45

NegativeArraySize, 127

NullPointer, 167, 172, 227

NumberFormat, 170

StackOverflow, 96

StringIndexOutOfBounds, 115,

154, 173

executable, 6, 14

experimental debugging, 12

expression, 24, 33, 63, 64, 83

big and hairy, 356

extends, 256, 257

extract digits, 47

F
factorial, 96, 106, 180

fibonacci, 100

FileNotFoundException, 354

final, 42, 223, 226

flag, 83, 88

floating-point, 25, 33

flow of execution, 57, 69, 353

for, 148

enhanced, 159

format specifier, 43, 51, 150

format string, 43, 51, 208

364 INDEX

frame, 61, 69

G
garbage collection, 194, 198, 223

generalization, 183, 189, 297, 315

generalize, 176, 179

getter, 207, 215

GitHub, xviii

Goodbye.java, 8

Google style, 9

Graphics, 274, 339

Greenfield, Larry, 12

GuessStarter.java, 53

H
hacker, 85, 89, 172

Hand, 258

hanging, 351

hardware, 2, 13

HAS-A, 266, 267, 274, 293

Hello.java, 4

helper method, 237, 248

hexadecimal, 38, 44, 209

high-level language, 6, 14

histogram, 140, 157, 233

HTML, 192, 329, 334

I
IDE, 317, 327

identical, 210, 215

if statement, 76

ImageIO, 310

immutable, 51, 168, 179, 195, 226

import statement, 39, 51

increment, 120, 148, 160

incremental development, 66, 70

independent, 207

index, 120, 128, 140, 227

indexOf, 116

infinite loop, 146, 160, 351

infinite recursion, 204, 352

information hiding, 202, 215

inheritance, 256, 266, 267, 297, 308

initialize, 21, 32, 83

inner loop, 150

InputMismatchException, 86

instance, 201, 214

instance method, 209, 213, 215

instance variable, 202, 214

instantiate, 201, 214

Integer, 169

integer division, 25, 26

interactions, 319

interface, 309

interpret, 6, 14

InterruptedException, 278

invoke, 55, 69

IS-A, 266, 267, 274, 293, 305

iteration, 114, 148, 154, 155, 160

iterative, 106, 160

J
JAR, 318, 327

Java Tutor, 62, 105

java.awt, 185, 339

java.io, 37

java.lang, 40

java.math, 174

java.util, 38

javac, 7, 172, 320

Javadoc, 192, 318, 329, 334, 338

javax.imageio, 310

JDK, 318, 327, 329

JFrame, 277, 340

JVM, 7, 318, 327

K
keyword, 20, 32, 203

INDEX 365

L
language

elements, 40

high-level, 6

low-level, 6

leap of faith, 99, 106, 242

length

array, 131

string, 115, 154

library, 38, 51, 191

linear search, 228, 232

Linux, 12

literal, 42, 51

local variable, 59, 69

Logarithm.java, 87

logic error, 31, 33, 347, 356

logical operator, 81, 88, 224

long, 63

loop, 146, 160

for, 148

infinite, 146

nested, 150, 227

search, 228

while, 145

loop body, 146, 160

loop variable, 150, 155, 160

low-level language, 6, 14

M
magic number, 42, 51

main, 5, 56

map to, 220

Math, 62

memory, 2, 13

memory diagram, 22, 32, 111, 116,

130, 165, 186, 204, 211, 222,

235

mental model, 62, 356

merge, 241

merge sort, 239, 248

method, 5, 14

abstract, 292

accessor, 207

boolean, 84

constructor, 203

equals, 210, 211

getter, 207

helper, 237

instance, 209, 213

modifier, 256

mutator, 208

parameters, 60

setter, 208

static, 212

toString, 209

value, 65

Mickey Mouse, 342

MissingFormatArgumentException,

45

modifier method, 256

modulo, 47, 51

modulus, 47, 51

multidimensional array, 272, 283

mutable, 189, 195, 198

mutator, 208

N
NaN, 89

NegativeArraySizeException, 127

neighbor, 269, 279

nested, 354

arrays, 274

conditions, 79

loops, 150

nesting, 78, 88, 227

new, 39, 53, 127, 185, 203

366 INDEX

newline, 8, 14, 94

NewLine.java, 56

next

Scanner, 86

nextInt

Random, 134

Scanner, 41

nondeterministic, 134, 140

not operator, 81

null, 167, 226

NullPointerException, 167, 172,

353

NumberFormatException, 170

O
object, 111, 165, 179

array of, 226

as parameter, 187

displaying, 209

mutable, 189

type, 201

Object class, 257

object code, 6, 14

object-oriented, 111, 165, 178, 190,

266, 294

off-by-one, 240, 248

operand, 24, 33

operator, 24, 33

assignment, 75

cast, 46

logical, 81, 224

new, 39, 53, 127, 185, 203

redirection, 322

relational, 75

remainder, 47

string, 28

or operator, 81

order of operations, 28, 33, 357

ordering, 224

outer loop, 150

overload, 204, 240

overloaded, 117, 121

override, 209, 215, 267

P
package, 37, 50

paint, 340

palindrome, 110

param tag, 333

parameter, 58, 69, 187

multiple, 60

parameter passing, 58, 69

parentheses, 29

parse, 30, 33, 170, 179

partial ordering, 224

pi, 62

Pile, 245

pixel, 341, 344

Player, 260

Point, 185

polymorphism, 305, 309, 315

portable, 6, 14

precedence, 28, 357

primitive, 111, 165, 179

print, 8, 209

print statement, 4, 14, 208, 354, 358

printArray, 129

printDeck, 227, 236

printf, 43, 119, 208

println, 5

printPoint, 187

printTime, 208

PrintTime.java, 60

PrintTwice.java, 58

private, 192, 202, 206

problem solving, 1, 13

INDEX 367

processor, 2, 13

program, 2, 13

programming, 3, 13

prompt, 41, 51

protected, 292

pseudocode, 237, 248

pseudorandom, 134, 140

public, 55

Q
quote mark, 8, 113, 152, 349

R
radians, 62

RAM, 2

Random, 134

randomInt, 238

rank, 219

rational number, 216

Rectangle, 188

recursion, 96, 106

infinite, 204, 352

recursive, 93, 106

redirection operator, 322, 328

reduce, 133, 140, 156, 157

refactor, 291, 294

reference, 128, 140, 185, 190, 222,

240

relational operator, 75, 88

remainder, 47

replace, 168

repository, xviii

return, 65, 87, 188

inside loop, 229

return statement, 357

return tag, 333

return type, 65, 70

return value, 65, 70

RGB, 342, 344

rounding error, 27, 33

row-major order, 273, 283

rubber duck, 359

run-time error, 31, 33, 86, 227, 347

S
scaffolding, 68, 70

Scanner, 38

scope, 62, 70, 193

Scrabble, 123, 163, 215

search, 132, 140, 156

selection sort, 238, 248

semicolon, 5, 30

setter, 208, 215

shadowing, 206, 215

short circuit, 82, 88, 173

shuffle, 237

signature, 331, 338

sleep, 278

sort

merge, 239

selection, 238

source code, 6, 14, 191

specialization, 297, 315

sprite, 310, 315

src.zip, 191

stable configuration, 270

stack diagram, 61, 69, 95, 98, 103

stack trace, 45, 51, 353

StackOverflowError, 96, 204, 351,

354

state, 22, 32, 49, 95, 260, 271, 288

statement, 4, 13

assignment, 21

catch, 278

conditional, 76

declaration, 19, 185

368 INDEX

else, 76

for, 148

if, 76

import, 39

initialization, 83

print, 8, 209, 354, 358

return, 65, 87, 188, 229, 357

switch, 79

throw, 303

try, 278

while, 145

static, 203, 212, 223

static context, 244, 248

string, 8, 14

array of, 221

comparing, 112, 118, 166

format, 120, 210

length, 115, 154

operator, 28

reference to, 222

String class, 185

StringBuilder, 197, 249

StringIndexOutOfBoundsException,

115, 154, 173

stub, 67, 70

style guide, 9

subclass, 256, 267

subdeck, 240

substring, 117

suit, 219

superclass, 257, 267

Surprise.java, 195

swapCards, 238

switch statement, 79

syntax, 347

syntax errors, 349

System.err, 86, 327

System.in, 38, 111, 165, 322

System.out, 37, 111, 165, 322

T
table

two-dimensional, 175

tag, 333, 338

temporary variable, 65, 70, 357

terminal, 320

testing, 67, 86, 250, 321

text editor, 318, 327

this, 194, 203, 244, 254

Thread.sleep, 278

throw, 303

Time, 202

addition, 212

token, 40, 51

toLowerCase, 168

top-down design, 238, 248, 262

Torvalds, Linus, 12

toString, 187, 209

toUpperCase, 168

tracing, 62, 231, 324, 353

traversal, 132, 140, 228, 274

try, 278

type, 32

array, 127

boolean, 75, 83

char, 19, 112, 151

double, 25

int, 19

long, 28, 63

object, 201

String, 8, 19, 185

void, 55

type cast, 46, 51

U
UML, 192, 198, 243, 266

INDEX 369

Unicode, 113, 120, 152

unit test, 325, 328

utility class, 38, 129

V
validate, 85, 89, 172

value, 19, 32

value constructor, 204

value method, 65

variable, 19, 32

instance, 202

local, 59

loop, 150, 155

private, 192, 202, 206

static, 223

temporary, 65, 357

virtual machine, 7, 14, 318

void, 55, 65, 69

W
War (card game), 245

while, 145

wildcard, 323, 328

wrapper class, 169, 179

wrapper method, 249

About the Authors

Adam Poliak is an assistant professor of computer science at Bryn Mawr

College, with a research focus on Natural Language Processing. He has a PhD

in computer science from Johns Hopkins University and has taught computer

science courses at Johns Hopkins University, Barnard College, and Bryn Mawr

College.

Allen Downey is a professor of computer science at Olin College of Engineering.

He has taught computer science at Wellesley College, Colby College, and UC

Berkeley. He has a PhD in computer science from UC Berkeley and master’s

and bachelor’s degrees from MIT. Allen is the creator of the best-selling Think

series for O’Reilly, which includes Think Python, Think Complexity, Think

DSP, and Think Bayes.

Chris Mayfield is an associate professor of computer science at James Madison

University, with a research focus on CS education and professional development.

He has a PhD in computer science from Purdue University and bachelor’s

degrees in CS and German from the University of Utah.

Notes

. 106

update these . 140

	Preface
	1. Computer Programming
	1.1. What Is a Computer?
	1.2. What Is Programming?
	1.3. The Command-line
	1.4. The Hello World Program
	1.5. Compiling Java Programs
	1.6. Displaying Two Messages
	1.7. Formatting Source Code
	1.8. Using Escape Sequences
	1.9. What Is Computer Science?
	1.10. Debugging Programs
	1.11. Vocabulary
	1.12. Exercises

	2. Variables and Operators
	2.1. Declaring Variables
	2.2. Assigning Variables
	2.3. Memory Diagrams
	2.4. Printing Variables
	2.5. Arithmetic Operators
	2.6. Floating-Point Numbers
	2.7. Rounding Errors
	2.8. Operators for Strings
	2.9. Compiler Error Messages
	2.10. Other Types of Errors
	2.11. Vocabulary
	2.12. Exercises

	3. Input and Output
	3.1. The System Class
	3.2. The Scanner Class
	3.3. Language Elements
	3.4. Literals and Constants
	3.5. Formatting Output
	3.6. Reading Error Messages
	3.7. Type Cast Operators
	3.8. Remainder Operator
	3.9. Putting It All Together
	3.10. The Scanner Bug
	3.11. Vocabulary
	3.12. Exercises

	4. Methods and Testing
	4.1. Defining New Methods
	4.2. Flow of Execution
	4.3. Parameters and Arguments
	4.4. Multiple Parameters
	4.5. Stack Diagrams
	4.6. Math Methods
	4.7. Composition
	4.8. Return Values
	4.9. Incremental Development
	4.10. Vocabulary
	4.11. Exercises

	5. Conditionals and Logic
	5.1. Relational Operators
	5.2. The if-else Statement
	5.3. Chaining and Nesting
	5.4. The switch Statement
	5.5. Logical Operators
	5.6. De Morgan's Laws
	5.7. Boolean Variables
	5.8. Boolean Methods
	5.9. Validating Input
	5.10. Example Program
	5.11. Vocabulary
	5.12. Exercises

	6. Recursive Methods
	6.1. Recursive Void Methods
	6.2. Recursive Stack Diagrams
	6.3. Value-Returning Methods
	6.4. The Leap of Faith
	6.5. Counting Up Recursively
	6.6. Binary Number System
	6.7. Recursive Binary Method
	6.8. CodingBat Problems
	6.9. Vocabulary
	6.10. Exercises

	7. Objects: Strings
	7.1. Primitives vs Objects
	7.2. Characters
	7.3. String Iteration
	7.4. The indexOf Method
	7.5. Substrings
	7.6. String Comparison
	7.7. String Formatting
	7.8. Vocabulary
	7.9. Exercises

	8. Arrays and References
	8.1. Creating Arrays
	8.2. Accessing Elements
	8.3. Displaying Arrays
	8.4. Copying Arrays
	8.5. Traversing Arrays
	8.6. Random Numbers
	8.7. Counting Characters
	8.8. Count of value
	8.9. Vocabulary
	8.10. Exercises

	9. Loops
	9.1. The while Statement
	9.2. Increment and Decrement
	9.3. The for Statement
	9.4. Nested Loops
	9.5. Characters
	9.6. Which Loop to Use
	9.7. String Iteration
	9.8. Array Iteration
	9.9. Building a Histogram
	9.10. The Enhanced for Loop
	9.11. Vocabulary
	9.12. Exercises

	10. Immutable Objects
	10.1. Primitives vs Objects
	10.2. The null Keyword
	10.3. Strings Are Immutable
	10.4. Wrapper Classes
	10.5. Command-Line Arguments
	10.6. Argument Validation
	10.7. BigInteger Arithmetic
	10.8. Incremental Design
	10.9. More Generalization
	10.10. Vocabulary
	10.11. Exercises

	11. Mutable Objects
	11.1. Point Objects
	11.2. Objects as Parameters
	11.3. Objects as Return Values
	11.4. Rectangles Are Mutable
	11.5. Aliasing Revisited
	11.6. Java Library Source
	11.7. Class Diagrams
	11.8. Scope Revisited
	11.9. Garbage Collection
	11.10. Mutable vs Immutable
	11.11. StringBuilder Objects
	11.12. Vocabulary
	11.13. Exercises

	12. Designing Classes
	12.1. The Time Class
	12.2. Constructors
	12.3. Value Constructors
	12.4. Getters and Setters
	12.5. Displaying Objects
	12.6. The toString Method
	12.7. The equals Method
	12.8. Adding Times
	12.9. Vocabulary
	12.10. Exercises

	13. Arrays of Objects
	13.1. Card Objects
	13.2. Card toString
	13.3. Class Variables
	13.4. The compareTo Method
	13.5. Cards Are Immutable
	13.6. Arrays of Cards
	13.7. Linear Search
	13.8. Binary Search
	13.9. Tracing the Code
	13.10. Vocabulary
	13.11. Exercises

	14. Objects of Arrays
	14.1. Decks of Cards
	14.2. Shuffling Decks
	14.3. Selection Sort
	14.4. Merge Sort
	14.5. Subdecks
	14.6. Merging Decks
	14.7. Adding Recursion
	14.8. Static Context
	14.9. Piles of Cards
	14.10. Playing War
	14.11. Vocabulary
	14.12. Exercises

	15. Extending Classes
	15.1. CardCollection
	15.2. Inheritance
	15.3. Dealing Cards
	15.4. The Player Class
	15.5. The Eights Class
	15.6. Class Relationships
	15.7. Vocabulary
	15.8. Exercises

	16. Arrays of Arrays
	16.1. Conway's Game of Life
	16.2. The Cell Class
	16.3. Two-Dimensional Arrays
	16.4. The GridCanvas Class
	16.5. Other Grid Methods
	16.6. Starting the Game
	16.7. The Simulation Loop
	16.8. Exception Handling
	16.9. Counting Neighbors
	16.10. Updating the Grid
	16.11. Vocabulary
	16.12. Exercises

	17. Reusing Classes
	17.1. Langton's Ant
	17.2. Refactoring
	17.3. Abstract Classes
	17.4. UML Diagram
	17.5. Vocabulary
	17.6. Exercises

	18. Advanced Topics
	18.1. Polygon Objects
	18.2. Adding Color
	18.3. Regular Polygons
	18.4. More Constructors
	18.5. An Initial Drawing
	18.6. Blinking Polygons
	18.7. Interfaces
	18.8. Event Listeners
	18.9. Timers
	18.10. Vocabulary
	18.11. Exercises

	A. Tools
	A.1. Installing DrJava
	A.2. DrJava Interactions
	A.3. Command-Line Interface
	A.4. Command-Line Testing
	A.5. Running Checkstyle
	A.6. Tracing with a Debugger
	A.7. Testing with JUnit
	A.8. Vocabulary

	B. Javadoc
	B.1. Reading Documentation
	B.2. Writing Documentation
	B.3. Javadoc Tags
	B.4. Example Source File
	B.5. Vocabulary

	C. Graphics
	C.1. Creating Graphics
	C.2. Graphics Methods
	C.3. Example Drawing
	C.4. Vocabulary
	C.5. Exercises

	D. Debugging
	D.1. Compile-Time Errors
	D.2. Run-Time Errors
	D.3. Logic Errors

	Index

